Natural Bond Orbital Analysis of the Acid-Catalyzed Dehydration of Ethanol

Viridiana G. Rubio and Eric D. Glendening

Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809

Introduction

One of the reaction mechanisms that students learn early on in sophomore-level organic chemistry is that of alcohol dehydration. In the presence of acid and heat, an alcohol,
like ethanol, dehydrates to give an alkene.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\ddot{\mathrm{O}} \mathrm{H} \xrightarrow{\text { acid, } \Delta} \quad \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \ddot{\mathrm{O}}^{\circ} .
$$

Ethanol is a primary alcohol that, following protonation, undergoes dehydration via an E2 mechanism, which is usually represented as follows:

In this work we demonstrate how students can use density functional theory calculations and natural bond orbital
analysis to explore an organic reaction mechanism, like ethanol dehydration, to gain insight into the bond breaking and making processes.

Methods

Gaussian-16 calculations were performed at the B3LYP/ccto approximate the aqueous solvent model (scrif=pcm,smd) geometries were optimized using "tight" convergence thresholds. Vibrational frequency calculations were performed to characterize the nature of each stationary
geometry (equilibrium or transition state). Intrinsic reactio coordinate (IRC) calculations mapped the minimum energy surface from reactants to products, and thermodynamic corrections were applied to calculate free energies ($\triangle \mathrm{G}$) at 298 K . Natural bond orbital (NBO) and natural resonance theory (NRT)

Results

The following energies, free energies, and minimum
frequencies were calculated for the frequencies were calculated for the uncatalyzed and $\mathrm{H}_{3} \mathrm{O}^{+}$
catalyzed reactions. Geometries include reactants (\mathbf{R}. catalyzed reactions. Geometries include reactants (\mathbf{R}, , complexes ($\mathbf{P C}$), and products (\mathbf{P}). Labels for the
geometries of the uncatalyzed reaction include an asterisk.
geometry $\underset{\text { (a.u.) }}{\mathbf{E}} \quad \underset{(\mathrm{kcal} / \text { mol) })}{\Delta \mathbf{E}} \underset{(\mathrm{kcal} / \mathrm{mol})}{\Delta \mathbf{G}} \underset{\left(\mathrm{cm} \mathrm{m}^{-1}\right)}{V_{\text {min }}}$

Uncatalyzed Reaction				
$\mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{H}\left(\mathbf{R}^{*}\right)$	-155.049696	0.0	0.0	272
TS*	-154.941589	67.8	62.5	2014
$\mathrm{CH}_{2}=\mathrm{CH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathbf{P C}{ }^{*}\right)$	-155.026152	14.8	9.1	103
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathbf{P} *)$	-155.020204	18.5	5.4	
Catalyzed Reaction				
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathbf{R})$	-231.908372	0.0	0.0	
$\mathrm{H}_{2} \mathrm{O} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{+}(\mathbf{R C})$	-231.913944	-3.5	4.9	55
Ts	-231.872410	22.6	25.6	8471
$\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{CH}_{2}=\mathrm{CH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{P C})$	-231.892737	9.8	13.7	39.
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathbf{P})$	-231.87	18.5	5.4	

Reaction Profile

Reaction profiles for the uncatalyzed and catalyzed reactions are shown below. Uncatalyzed dehydration proceeds via intramolecular proton transfer from C_{B} to the hydroxyl O
followed by $\mathrm{H}_{2} \mathrm{O}$ elimination. The reaction has an exceptionally high activation energy of $67.8 \mathrm{kcal} / \mathrm{mol}$

The $\mathrm{H}_{3} \mathrm{O}^{+}$catalyst decreases the activation energy to 22.6 $\mathrm{kcal} / \mathrm{mol}$. The catalyzed reaction begins with proton transfer from $\mathrm{H}_{3} \mathrm{O}^{+}$to ethanol. Protonated ethanol then eliminat
$\mathrm{H}_{2} \mathrm{O}$ as a proton on C_{β} transfers to an adjacent solvent molecule.
An IRC calculation of the catalyzed reaction reveals a minimum energy pathway that connects the reactant
complex to the product complex via the transition state. The complex to the product complex via the transition state. The
IRC includes 122 geometries along the pathway, from IRC= -7.26 to IRC $=+6.68$. The transition state is at IRC $=0.00$.

Natural Resonance Theory Analysis
The natural bond orders of NRT analysis reveal the making and breaking of bonds across the IRC. The following shows that $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ single bonds break as a $\mathrm{O}-\mathrm{H}$ single bond consistent with the E2 mechanism for dehydration of ethanol.

Electronic Rearrangement

Plots of pNLMOs at four points across the IRC show how electron pairs rearrange during dehydration. The following "filmstrips" (columns) respectively show the three essential
transformations for the reaction, including:

> - an O Ione pair becoming an OH bond - CH bond becoming a CC π bond
a CH bond becoming a CC π bond

These transformations clearly show what is meant by the three curved arrows that organic chemists draw for the E2
dehydration mechanism (as shown in the Introduction).

Delocalizing Interactions

Two orbital, donor-acceptor interactions facilitate bond rearrangement in the dehydration reaction.

$n_{\mathrm{O}} \rightarrow \sigma_{\mathrm{CH}} *$
On the left, a O lone pair donates about 0.033 electrons into an unfilled CH antibond. This interaction gives rise to $\mathrm{O}-\mathrm{H}$ bonding character while acting to cleave the CH bond. On
the right, a CH bond donates about 0.069 electrons into an the right, a CH bond donates about 0.069 electrons into an
unfilled CO antibond. This yields $\mathrm{C}-\mathrm{C} \pi$ bonding character while weakening the C -O interaction.

Influence of Explicit Solvent Molecules
We also examined $\mathrm{H}_{3} \mathrm{O}^{+}$-catalyzed dehydration of ethanol with up to eight explicit solvent molecules in the field of intrinsic solvent. Below are the reactant (left) and product (right) complexes with explicit water.

Interestingly, the reaction proceeds from reactant to product in a single step, through a single transition state, revealing a
cascade of four consecutive proton transfers (depicted by the blue arrows). Hydronium starts in the upper portion of the reactant complex, becoming hydronium at the bottom of the product complex. The free energy of activation ($\Delta \mathrm{G}^{\ddagger}$) for this process is $33.6 \mathrm{kcal} / \mathrm{mol}$, which is largely consistent with estimates from experiment. The following figure shows calculation.

Conclusions

NBO/NRT analysis reveals bond breaking and making processes for the dehydration of ethanol that are consistent with the E2 mechanism. These processes are facilitated by donor-acceptor interactions that act to simultaneously make

Including explicit solvent molecules in the vicinity of the reaction is important for calculating free energies of
activation that compare favorably with experiment.

Acknowledgements

The authors gratefully acknowledge the financial support of of Academic Affairs, and the ISU College of Arts and of Academ.
Sciences.

