Program Outcomes Assessment

MS in Educational Technology

Created on: 01/04/2010 09:26:00 AM CDT
Last Modified: 11/11/2015 10:19:27 AM CDT
Table of Contents

General Information
1

Standing Requirements
2
- Mission Statement ... 2
- Outcomes Library .. 2
- Curriculum Map ... 2
- Communication of Outcomes ... 3

Archive
4
- Archive ... 4

2012-2013 Assessment Cycle
5
- Assessment Plan .. 5
- Assessment Findings ... 5
- Action Plan .. 5
- Status Report .. 6

2013-2014 Assessment Cycle
8
- Assessment Plan .. 8
- Assessment Findings ... 19
- Action Plan .. 36
- Status Report .. 37

2014-2015 Assessment Cycle
38
- Assessment Plan .. 38
- Assessment Findings ... 49
- Action Plan .. 66
- Status Report .. 66

2015-2016 Assessment Cycle
68
- Assessment Plan .. 68
- Assessment Findings ... 79
- Action Plan .. 92
- Status Report .. 92

2016-2017 Assessment Cycle
93
General Information (Program Outcomes Assessment)
Standing Requirements

❖ Mission Statement

The MS in Educational Technology program is an interdisciplinary program that prepares students to systematically design and develop instruction with optimal use of technology, and to implement, manage, and evaluate the total process of teaching and learning in order to bring the most effective, efficient, and appealing instruction to various teaching and training settings including kindergarten-12 schools, universities, government, business/industry, and the military. The Mission of our program is to develop candidates who are committed to helping global education with systematic instructional design and technology including those from diverse cultural backgrounds and those with a variety of needs. They represent the profession proudly by becoming responsible individuals who contribute meaningfully to the profession and the society in which we live.

❖ Outcomes Library

MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1: Design</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.</td>
<td></td>
</tr>
<tr>
<td>Standard 2: Development</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.</td>
<td></td>
</tr>
<tr>
<td>Standard 3: Utilization</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.</td>
<td></td>
</tr>
<tr>
<td>Standard 4: Management</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.</td>
<td></td>
</tr>
<tr>
<td>Standard 5: Evaluation</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.</td>
<td></td>
</tr>
</tbody>
</table>
Curriculum Map

Active Curriculum Maps

- Educational Technology (See appendix)
 Alignment Set: MS in Educational Technology Outcome Set - AECT Standards
 Created: 08/31/2010 1:46:23 pm CDT
 Last Modified: 09/14/2010 10:08:37 am CDT

Communication of Outcomes

Outcomes are communicated to students through project rubrics and formative feedback. Stakeholders include members of the department and university. Outcomes are communicated through program data.
Archive (This area is to be used for archiving pre-TaskStream assessment data and for current documents.)

File Attachments:

1. MS in Educational Technology - School Library Media Track - SPA Report (ALA) March 2011.pdf (See appendix)

2. MS in Educational Technology - Educational Technology Track - SPA Report (AECT) March 2011.pdf (See appendix)

3. SPA Report_2015.docx (See appendix)
2012-2013 Assessment Cycle

Assessment Plan

Outcomes and Measures

Assessment Findings

Finding per Measure

Overall Recommendations

No text specified

Overall Reflection

No text specified

Action Plan

Actions

ACtion Plan

Outcome

Action Plan

Action: Review courses and redesign assessment based on new AECT Standards

This Action is associated with the following Findings

No supporting Findings have been linked to this Action.

Action Details: The MS in Educational Technology program is a strong program, which has been under ongoing evaluation and revision by its faculty over the past decade. This program provides profound knowledge and skills to our graduate students. Through experiential learning, our graduate students are capable of working in various fields with instructional design and implementation of technology into all teaching, training, and learning situations, including P-12, higher education, corporations, military, government, and other sectors. However, owing to the fact this program is not only focused on P-12, the assessment of this program based on NCATE criteria becomes challenging.

AECT (Association for Educational Communications and Technology) took the action and is no longer an accrediting association with NCATE. Our program has to follow AECT in future assessment in order to keep up with peer programs in the same field over the country. There are two AECT assessments proposed in 2012: 1) The New AECT Standards and Endorsement Plan for Educational Technology Graduate Programs and 2) The New AECT Certificate Program Endorsement.

Implementation Plan (timeline): See attached for activities to occur during 2013-14

Key/Responsible Personnel: Department faculty

Measures: Proposal submitted to AECT in April for review

Resource Allocations: None
Priority: High

Supporting Attachments:
[MS_in_Ed_Tech.pdf (Adobe Acrobat Document) (See appendix)]

Status Report

<table>
<thead>
<tr>
<th>Action Statuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>Action Plan</td>
</tr>
</tbody>
</table>

Outcome

Action:* Review courses and redesign assessment based on new AECT Standards

Action Details: The MS in Educational Technology program is a strong program, which has been under ongoing evaluation and revision by its faculty over the past decade. This program provides profound knowledge and skills to our graduate students. Through experiential learning, our graduate students are capable of working in various fields with instructional design and implementation of technology into all teaching, training, and learning situations, including P-12, higher education, corporations, military, government, and other sectors. However, owing to the fact this program is not only focused on P-12, the assessment of this program based on NCATE criteria becomes challenging.

AECT (Association for Educational Communications and Technology) took the action and is no longer an accrediting association with NCATE. Our program has to follow AECT in future assessment in order to keep up with peer programs in the same field over the country. There are two AECT assessments proposed in 2012: 1) The New AECT Standards and Endorsement Plan for Educational Technology Graduate Programs and 2) The New AECT Certificate Program Endorsement.

Implementation Plan (timeline):* See attached for activities to occur during 2013-14

Key/Responsible Personnel: Department faculty

Measures: Proposal submitted to AECT in April for review

Resource Allocations: None

Priority: High

Supporting Attachments:

[MS_in_Ed_Tech.pdf (Adobe Acrobat Document) (See appendix)]

Status for Review courses and redesign assessment based on new AECT Standards

No Status Added

Status Summary

No text specified

Summary of Next Steps

No text specified
Assessment Plan

Outcomes and Measures

<table>
<thead>
<tr>
<th>MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1: Design</td>
</tr>
<tr>
<td>Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.</td>
</tr>
<tr>
<td>Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline):</td>
</tr>
<tr>
<td>Responsible Individual(s):</td>
</tr>
</tbody>
</table>

| **Measure:** Final project for CIMT 620 |
| Direct - Student Artifact |
| **Details/Description:** This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard. |
| **Target:** | |
| **Implementation Plan (timeline):** | |
Measure: Final project of CIMIT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMIT 689 is a course at a more advanced level than CIMIT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:
Implementation Plan (timeline):

Measure: Projects in CIMIT 543
Direct - Student Artifact

Details/Description: CIMIT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMIT 543. CIMIT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):

Responsible Individual(s):
Standard 2: Development
Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation),
which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project of CIM 689

Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIM 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative
component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 3: Utilization

Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

Measure: Case study project for CIMT 630

Direct - Student Artifact

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and it utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project's requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at
a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Measure:</th>
<th>Projects in CIMT 543</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Student Artifact</td>
</tr>
</tbody>
</table>

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to describe the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Measure:</th>
<th>Supervised field work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Student Artifact</td>
</tr>
</tbody>
</table>

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.
This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 4: Management

Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620

Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Final project of CIMT 689

Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 5: Evaluation
Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor
evaluation, and long-range planning.

| Provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.
| **Target:**
| Implementation Plan (timeline):
| Responsible Individual(s):

| **Measure:** Evaluation project in CIMT 620
| Direct - Other
| **Details/Description:** This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.
| **Target:**
| Implementation Plan (timeline):
| Responsible Individual(s):

| **Measure:** Final project for CIMT 620
| Direct - Student Artifact
| **Details/Description:** This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.
| **Target:**
| Implementation Plan (timeline):
| Responsible Individual(s):

| **Measure:** Final project of CIMT 689
| Direct - Student Artifact
| **Details/Description:** This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners)
following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMT 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational
technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Assessment Findings

Finding per Measure

MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)

Standard 1: Design
Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Educational software program or workshop development

Summary of Findings: Spring 2014 Standard average: 3.7 (on a 5-point rubric)

Recommendations:

Reflections/Notes: The culminating project of CIMT 640's (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies,
techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges.

Students struggled the most with Standards 1 and 5, earning an average of 3.7 and 3 respectively. For Standard 1, while students performed fairly well with regard to writing objective (1.1.1a), message design (1.2.c), instructional strategies (1.3.a), and motivational strategies (1.3.d), earning an average of 4-5 in each of those benchmarks, they did not do as well with task and context analysis (1.1.1.b), categorizing objectives (1.1.1.c), applying theory (1.2.b), analysis of instructional strategies (1.3.c), and learner influence on the selection and implementation of strategies (1.4.b and 1.4.c), earning an average of 2.7-3.7 in those categories. The dichotomous performance may be a result of the group's initial focus on the actual product rather than the report of their design. Many did appear to apply instructional theories to their creations, but their limited explanations did not often indicate their knowledge in this area. Writing objectives and the visual and instructional appeal of the videos was greatly emphasized during the course, and while they instructional message and application of theory was a part of those conversations, students were not required to write out their justifications until the end of the project, at which time they may not have had time to elaborate or they may have forgotten some of their applied strategies.

Measure: Final project for CIMT 620
Direct: Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.41 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.63 (on a 5-point rubric)
Spring 2014 Student average: 4.52 (on a 5-point rubric)
Summer 2014 Student average: 4.47 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.

Measure: Final project of CIMT 689
Direct: Student Artifact
Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (Timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings:
- Fall 2013 Standard average: 4.25 (on a 5-point rubric)
- Spring 2014 Standard average: 4.5125 (on a 5-point rubric)
- Summer 2014 Standard average: 4.36 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of...
budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Projects in CIMT 543

Summary of Findings: The instructor of CIMT 543 left without leaving the data for fall 2013 or spring 2014.
Recommendations:
Reflections/Notes:

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Supervised field work

Summary of Findings: Fall 2013 Standard average: 5 (on a 5-point rubric)
Spring 2014 Standard average: 4.71 (on a 5-point rubric)
Summer 2014 Standard average: 4.12 (on a 5-point rubric)
Recommendations:
Reflections/Notes:

Standard 2:
Development
Candidates demonstrate the knowledge, skills, and

Measure: Educational software program or workshop development
Direct - Student Artifact
dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

Summary of Findings: Spring 2014 Standard average: 5.0 (on a 5-point rubric)

Recommendations:

Reflections/Notes: The culminating project of CIMT 640’s (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies, techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges. Students mastered Standards 2 and 4, with average scores of 5. The medium and support provided throughout the process ensured students’ success in “develop[ing] instructional materials and experiences” with such technologies. They were also able to effectively manage their groups through regular collaborative meetings, many of which also involved the instructor, who worked individually with groups to help resolve conflicts. Students developed leadership skills in the process and found technologies to assist them in the design and development processes.

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):
Findings for Final project for CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.53 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.62 (on a 5-point rubric)
Spring 2014 Student average: 4.19 (on a 5-point rubric)
Summer 2014 Student average: 4.64 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: Fall 2013 Standard average: 5.00 (on a 5-point rubric)
Spring 2014 Standard average: 4.66625 (on a 5-point rubric)
Summer 2014 Standard average: 4.47 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate's ability to
design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Projects in CITM 543</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Findings: The instructor of CITM 543 left without leaving the data for fall 2013 or spring 2014.</td>
</tr>
<tr>
<td>Recommendations:</td>
</tr>
<tr>
<td>Reflections/Notes:</td>
</tr>
</tbody>
</table>

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CITM 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Findings for Supervised field work

Summary of Findings: Fall 2013 Standard average: 5 (on a 5-point rubric)
Spring 2014 Standard average: 4.77 (on a 5-point rubric)
Summer 2014 Standard average: 4.18 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Standard 3: Utilization

Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

<table>
<thead>
<tr>
<th>Measure: Case study project for CIMT 630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Student Artifact</td>
</tr>
</tbody>
</table>

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and it utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Case study project for CIMT 630</th>
</tr>
</thead>
</table>

No Findings Added

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Educational software program or workshop development</th>
</tr>
</thead>
</table>

Summary of Findings: Spring 2014 Standard average: 4.2 (on a 5-point rubric)

Recommendations:

Reflections/Notes: The culminating project of CIMT 640's (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies, techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges.

Groups performed fairly well with Standard 3. Although more support was needed, they earned an overall average of 4.2 in this standard. They were not always successful in articulating their design choices and ethical practices, but with time they were able to address most of the major concerns.

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.47 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.36 (on a 5-point rubric)
Spring 2014 Student average: 4.36 (on a 5-point rubric)
Summer 2014 Student average: 4.50 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.

Slightly lower aggregate scores for performance criteria were noted for individual candidates in Standards 3 (Utilization) in Fall 2013, Section 301. These were addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development.

Measure: Final project of CIMT 689
Direct - Student Artifact
Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: Fall 2013 Standard average: 4.79 (on a 5-point rubric)
Spring 2014 Standard average: 4.51625 (on a 5-point rubric)
Summer 2014 Standard average: 4.23 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of
budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Projects in CIMT 543

Summary of Findings: The instructor of CIMT 543 left without leaving the data for fall 2013 or spring 2014.

Recommendations:

Reflections/Notes:

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

Summary of Findings: Fall 2013 Standard average: 5 (on a 5-point rubric)
Spring 2014 Standard average: 4.38 (on a 5-point rubric)
Summer 2014 Standard average: 4.00 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Educational software program or workshop development
Direct - Student Artifact

Standard 4:
Management
Candidates demonstrate knowledge, skills, and...
dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMIT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Educational software program or workshop development

Summary of Findings: Spring 2014 Standard average: 5.0 (on a 5-point rubric)

Recommendations:

Reflections/Notes: The culminating project of CIMIT 640’s (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies, techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges.

Students mastered Standards 2 and 4, with average scores of 5. The medium and support provided throughout the process ensured students’ success in “develop[ing] instructional materials and experiences” with such technologies. They were also able to effectively manage their groups through regular collaborative meetings, many of which also involved the instructor, who worked individually with groups to help resolve conflicts. Students developed leadership skills in the process and found technologies to assist them in the design and development processes.

Measure: Final project for CIMIT 620

Direct = Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMIT 620. CIMIT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMIT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Findings for Final project for CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.51 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.38 (on a 5-point rubric)
Spring 2014 Student average: 4.45 (on a 5-point rubric)
Summer 2014 Student average: 4.49 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.

Slightly lower aggregate scores for performance criteria were noted for individual candidates in Fall 2013, Section 301 for Standard 4 (Management). These were addressed in feedback sessions and remediation to place additional emphasis on resource management.

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: Fall 2013 Standard average: 4.50 (on a 5-point rubric)
Spring 2014 Standard average: 4.625 (on a 5-point rubric)
Summer 2014 Standard average: 4.17 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local
Students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Supervised field work

Summary of Findings: Fall 2013 Standard average: 5 (on a 5-point rubric)
Spring 2014 Standard average: 4.25 (on a 5-point rubric)
Summer 2014 Standard average: 4.13 (on a 5-point rubric)

Recommendations:
Reflections/Notes:

Standard 5: Evaluation
Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

Summary of Findings: Spring 2014 Standard average: 3.0 (on a 5-point rubric)

Recommendations:
Reflections/Notes: The culminating project of CIMT 640's (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies, techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges.
Students struggled the most with Standards 1 and 5, earning an average of 3.7 and 3 respectively. Regarding Standard 5, given the limited timeframe of the semester and the delivery format, criterion-referenced evaluation was not emphasized in the course. While it was recommended and conversations occurred regarding its implementation, students were unsure how to incorporate it when they did not have control of the final platform in which it would be delivered (since it was to be delivered to and ultimately used by the client).

Measure: Evaluation project in CIMT 620
Direct - Other

Details/Description: This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Evaluation project in CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.4 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.5 (on a 5-point rubric)
Spring 2014 Student average: 4.7 (on a 5-point rubric)
Summer 2014 Student average: 4.5 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation). Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with.

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Fall 2013, Section 401 Student average: 4.61 (on a 5-point rubric)
Fall 2013, Section 301 Student average: 4.79 (on a 5-point rubric)
Spring 2014 Student average: 4.57 (on a 5-point rubric)
Summer 2014 Student average: 4.65 (on a 5-point rubric)

Recommendations:

Reflections/Notes: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.

Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners.

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):
Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: Fall 2013 Standard average: 4.33 (on a 5-point rubric)
Spring 2014 Standard average: 4.37375 (on a 5-point rubric)
Summer 2014 Standard average: 4.08 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in
educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL).

In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Projects in CIMT 543

Summary of Findings: The instructor of CIMT 543 left without leaving the data for fall 2013 or spring 2014.

Recommendations:
Reflections/Notes:

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The
student is required to present and discuss the project in one of the Master’s classes or when the
class is not available, to the instructor, answering all possible questions from peers or the instructor
to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

Summary of Findings: Fall 2013 Standard average: 5 (on a 5-point rubric)
Spring 2014 Standard average: 4.33 (on a 5-point rubric)
Summer 2014 Standard average: 3.75 (on a 5-point rubric)

Recommendations:

Reflections/Notes:

Overall Recommendations

No text specified

Overall Reflection

No text specified

Action Plan

Actions

MS in Educational Technology Action Plan

Outcome

Action Plan for 2013-2014

Action: Revisit assessment plan

This Action is associated with the following Findings

No supporting Findings have been linked to this Action.

Action Details: Through experiential learning, our graduate students are capable of working in
various fields with instructional design and implementation of technology into all teaching, training,
and learning situations, including P-12, higher education, corporations, military, government, and
other sectors. The assessment rubrics we designed were based on AECT (Association for
Educational Communications and Technology)’s old standards. There are two AECT assessments
proposed in 2012: 1) The New AECT Standards and Endorsement Plan for Educational Technology
Graduate Programs and 2) The New AECT Certificate Program Endorsement. Our program will
revisit our assessment plan to follow AECT new standards and apply for AECT approval.

An on-line M.S. program in Educational Technology has been developed and approved. To date
there have been no registrants for the program.

Implementation Plan (timeline):

Key/Responsible Personnel:

Measures:
Resource Allocations:

Priority: Medium

Status Report

Action Statuses

MS in Educational Technology Action Plan

Outcome

Action Plan for 2013-2014

Action: Revisit assessment plan

Action Details: Through experiential learning, our graduate students are capable of working in various fields with instructional design and implementation of technology into all teaching, training, and learning situations, including P-12, higher education, corporations, military, government, and other sectors. The assessment rubrics we designed were based on AECT (Association for Educational Communications and Technology)’s old standards. There are two AECT assessments proposed in 2012: 1) The New AECT Standards and Endorsement Plan for Educational Technology Graduate Programs and 2) The New AECT Certificate Program Endorsement. Our program will revisit our assessment plan to follow AECT new standards and apply for AECT approval.

An on-line M.S. program in Educational Technology has been developed and approved. To date there have been no registrants for the program.

Implementation Plan (timeline):

Key/Responsible Personnel:

Measures:

Resource Allocations:

Priority: Medium

Status for Revisit assessment plan

No Status Added

Status Summary

No text specified

Summary of Next Steps

No text specified
Assessment Plan

Outcomes and Measures

MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)

MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)

Standard 1: Design
Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Direct - Student Artifact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ISD models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.</td>
<td></td>
</tr>
</tbody>
</table>

| Target: |
| **Implementation Plan (timeline):** |
| **Responsible Individual(s):** |

Measure: Final project for CIMT 620
Direct - Student Artifact

| Details/Description | This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard. |

| Target: |
| **Implementation Plan (timeline):** |
Responsible Individual(s):

Measure: Final project of CIMIT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMIT 689 is a course at a more advanced level than CIMIT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMIT 543
Direct - Student Artifact

Details/Description: CIMIT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMIT 543. CIMIT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation),
which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

▼ **Measure:** Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

▼ **Measure:** Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative
component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Standard 3: Utilization
Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

Measure: Case study project for CIMT 630
Direct - Student Artifact

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and its utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.

Target:
Implementation Plan (timeline):
Responsible Individual(s):
Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project's requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620

Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project of CIMT 689

Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at
a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/ approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.
This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Standard 4: Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.</td>
</tr>
</tbody>
</table>

| **Measure:** Educational software program or workshop development |
| **Direct - Student Artifact** |

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

| **Measure:** Final project for CIMT 620 |
| **Direct - Student Artifact** |

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Final project of CIMT 689

Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 5: Evaluation

Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor
evaluation, and long-range planning.

provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Measure: Evaluation project in CIMT 620
Direct - Other

Details/Description: This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners)
following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMIT 689 is a course at a more advanced level than CIMIT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMIT 543

Direct - Student Artifact

Details/Description: CIMIT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMIT 543. CIMIT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and includes the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMIT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational
technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Assessment Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding per Measure</td>
</tr>
<tr>
<td>MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)</td>
</tr>
<tr>
<td>MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)</td>
</tr>
</tbody>
</table>
| **Standard 1: Design**
Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics. |
| **Measure:** Educational software program or workshop development |
| Direct - Student Artifact |
| **Details/Description:** This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references. |
| **Target:**

Implementation Plan (timeline):

Responsible Individual(s):

| **Findings** for Educational software program or workshop development |
| **Summary of Findings:** Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions with remediation (where appropriate) to place additional emphasis on design, development, utilization, implementation, and media assessment, as needed in order to achieve |
specified learning outcomes.

Standard Average:
Standard 1 Design: 4.7
Standard 2 Development: 4.8
Standard 3 Utilization: 4.8
Standard 4 Management: 4.9
Standard 5 Evaluation: 4.9
Individual Student Average: 4.8

Recommendations:
Reflections/Notes:

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners. Poor performance against standards for Student7 and for Student9 was due to missing assignments, resulting in incomplete attainment of performance outcomes.

Student Average:
Standard 1 Design: 4.2
Standard 2 Development: 4.2
Standard 3 Utilization: 4.2
Standard 4 Management: 4.2
Standard 5 Evaluation: 4.4
Individual Student Average: 4.2

Recommendations:
Reflections/Notes:

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: This semester’ students are not MS Educational Technology students and this course is not a required course for this class of students. Three students are in the doctoral program and three are in the MED C&I program. The instructional design and advanced instructional design courses are required for doctoral students while these courses are not required for MED C&I.

MS in Educational Technology Submitted by Feng-Qi Lai Assessment 2014-2015 Department of Teaching and Learning Page 11 of 13 students. This course is a higher-level course on the MS Ed Tech program and for Ed Tech students it is advised to take the instructional design course before taking this course. Four students of this class demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy. Students 5 and 6 are in the MED C&I program and relatively new in the program. Their projects do not meet the project requirement well.

Student Average:
- Standard 1 Design: 4.35
- Standard 2 Development: 4.33
- Standard 3 Utilization: 4.43
- Standard 4 Management: 4.39
- Standard 5 Evaluation: 4.28
- Individual Student Average: 4.35

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and
Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Projects in CIMT 543

No Findings Added

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Findings for Supervised field work

Summary of Findings: All students were working with the distance education projects, designing and developing Blackboard online courses with Subject Matter Experts (SMEs). Student 1 did not communicate with the SME well so did not meet some requirements that the SME wanted. The instructor evaluated the online course that the student designed and developed. No serious deficiencies were identified. It looks that the student received slightly lower scores than her performance demonstrated.

Standard Average:
Standard 1 Design: 4.39
Standard 2 Development: 4.6
Standard 3 Utilization: 4.4
Standard 4 Management: 4.38
Standard 5 Evaluation: 4.33
Individual Student Average: 4.42

Recommendations:

Reflections/Notes:

Standard 2: Development
Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development
No Findings Added

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620
demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 tryout learners. Lower performance against Standard 2 for Student1 was due to lack of participation in collaborative learning activities, resulting in incomplete attainment of performance outcomes.

- Standard Average:
 - Standard 1 Design: 4.7
 - Standard 2 Development: 4.5
 - Standard 3 Utilization: 4.9
 - Standard 4 Management: 4.8
 - Standard 5 Evaluation: 4.9
- Individual Student Average: 4.8

Recommendations:

Reflections/Notes:

Measure: Final project of CIMT 689

Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):
Responsible Individual(s):

Findings for Final project of CIMT 689

Summary of Findings: This course is a higher-level course and the project requirements are set higher: integrating theories into practical instructional design. Seven candidates demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy.

- **Standard Average:**
 - Standard 1 Design: 4.53
 - Standard 2 Development: 4.57
 - Standard 3 Utilization: 4.57
 - Standard 4 Management: 4.57
 - Standard 5 Evaluation: 4.48
- **Individual Student Average:** 4.54

Recommendations:

Reflections/Notes:

Measure: Projects in CIMT 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Projects in CIMT 543

Summary of Findings: Candidates who completed all projects have consistently demonstrated
competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis, instructional strategy development and implementation, and media assessment, as needed to demonstrate specified learning outcomes.

Standard Average:
Standard 1 Design: 4.6
Standard 2 Development: 4.6
Standard 3 Utilization: 4.5
Standard 4 Management: NA
Standard 5 Evaluation: 4.6
Individual Student Average: 4.6

Recommendations:
Reflections/Notes:

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

Summary of Findings: Both students were working with the distance education projects, designing and developing Blackboard online courses with Subject Matter Experts (SMEs). Both students received the best evaluation ever.

Standard Average:
Standard 1 Design: 5
Standard 2 Development: 5
Standard 3 Utilization: 5
Standard 4 Management: 5
Standard 5 Evaluation: 5
Individual Student Average: 5

Results: Target Achievement: Exceeded

Recommendations:

Reflections/Notes:
Standard 3: Utilization
Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

Measure: Case study project for CIMT 630
Direct - Student Artifact

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) identify the target learning population, 2) identify the learning technology and its utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format. Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Case study project for CIMT 630

Summary of Findings: Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis, instructional strategy development and implementation, and media assessment, as needed in order to achieve specified learning outcomes.

Standard Average:
Standard 1 Design: NA
Standard 2 Development: NA
Standard 3 Utilization: 4.7
Standard 4 Management: NA
Standard 5 Evaluation: NA
Individual Student Average: 4.7

Recommendations:

Reflections/Notes:

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.
Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Final project for CIMT 620

Summary of Findings: Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners. Lower performance against Standard 2 for Student1 was due to lack of participation in collaborative learning activities, resulting in incomplete attainment of performance outcomes.

Standard Average:
Standard 1 Design: 4.7
Standard 2 Development: 4.5
Standard 3 Utilization: 4.7
Standard 4 Management: 4.7
Standard 5 Evaluation: 4.8
Individual Student Average: 4.7

Recommendations:

Reflections/Notes:
Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate's ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Findings for Projects in CIMT 543

Summary of Findings: Candidates who completed all projects have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis, instructional strategy development and implementation, and media assessment, as needed in order to achieve specified learning outcomes.

- Standard Average:
 - Standard 1 Design: 4.1
 - Standard 2 Development: 4.1
 - Standard 3 Utilization: 4.3
 - Standard 4 Management: NA
 - Standard 5 Evaluation: 4.2
 - Individual Student Average: 4.2

Recommendations: The program is working on a strategic plan and will revisit the curriculum and course design to align the assessment with AECT new standards. The program is planning on submit the program for AECT to review and to get AECT recognition.

Reflections/Notes: The assessments of this program are based on AECT old standards, so the rubrics were designed based on AECT old five standards including many sub-standards. The assessment rubrics are very complicated. The AECT new standards are much simpler. The assessments will need to be redesigned to meet AECT new standards. The data are collected based on the rubrics that were designed using the old standards and will be collected based on the rubrics that are designed using the new standards when the design of new rubrics are completed.

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning Center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/ instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work
Summary of Findings: Student 1 worked with the Math department on ISU campus and Student 2 worked with a school. Student 1 revamped existing and created new projects for Math 102, Quantitative Literacy. The purpose for the development of the project that Student 2 worked was to provide a consistent and in-depth delivery method to facilitate the participation and completion of orienting new students to the requirements and expectations of the health science programs at the school’s campus and ultimately for all Harrison College campuses offering these programs.

Standard Average:
Standard 1 Design: 4.9
Standard 2 Development: 4.6
Standard 3 Utilization: 4.8
Standard 4 Management: 4.8
Standard 5 Evaluation: 4.9
Individual Student Average: 4.77

Recommendations:

Reflections/Notes:

Standard 4: Management
Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMIT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Final project for CIMIT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMIT 620. CIMIT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMIT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and
instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Final project for CIMT 620</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Measure: Final project of CIMT 689

Direct: Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Final project of CIMT 689</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Measure: Supervised field work

Direct: Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that
the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Supervised field work</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Standard 5: Evaluation

Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.

Measure: Educational software program or workshop development

Direct - Student Artifact

<table>
<thead>
<tr>
<th>Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project's requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline):</td>
</tr>
<tr>
<td>Responsible Individual(s):</td>
</tr>
<tr>
<td>Findings for Educational software program or workshop development</td>
</tr>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Measure: Evaluation project in CIMT 620

Direct - Other

<table>
<thead>
<tr>
<th>Details/Description: This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline):</td>
</tr>
<tr>
<td>Responsible Individual(s):</td>
</tr>
<tr>
<td>Findings for Evaluation project in CIMT 620</td>
</tr>
</tbody>
</table>
Summary of Findings: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick’s evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning. Lower score for Student7 is because the student did not complete the required projects.

Standard Average:
Standard 1 Design: -
Standard 2 Development: -
Standard 3 Utilization: -
Standard 4 Management: -
Standard 5 Evaluation: 4.5
Individual Student Average: -

Recommendations:

Reflections/Notes:

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

No Findings Added

Measure: Final project of CIMT 689
Direct - Student Artifact
Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Projects in CIMT 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefore most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Findings for Projects in CIMT 543

No Findings Added

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

No Findings Added

Overall Recommendations

The program is working on a strategic plan and will revisit the curriculum and course design to align the assessment with AECT new standards. The program is planning on submit the program for AECT to review and to get AECT recognition.

Overall Reflection

The assessments of this program are based on AECT old standards, so the rubrics were designed based on AECT old five standards including many sub-standards. The assessment rubrics are very complicated. The AECT new standards are much simpler. The assessments will need to be redesigned to meet AECT new standards. The data are collected based on the rubrics that were designed using the old standards and will be collected based on the rubrics that are designed using the new standards when the design of new rubrics are completed.

Substantiating evidence (evidence of faculty discussions concerning the data, the planned improvements, etc.). The strategic plan on enrollment is under discussion in the program and the assessment is a part of the discussion. A plan with a timeline will be provided when the discussion of the strategic plan on enrollment is completed.

Action Plan
Status Report
2015-2016 Assessment Cycle

Assessment Plan

Outcomes and Measures

<table>
<thead>
<tr>
<th>Standard 1: Design</th>
<th>Measure: Educational software program or workshop development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.</td>
<td>Direct - Student Artifact</td>
</tr>
<tr>
<td>Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.</td>
<td></td>
</tr>
<tr>
<td>Target:</td>
<td></td>
</tr>
<tr>
<td>Implementation Plan (timeline):</td>
<td></td>
</tr>
<tr>
<td>Responsible Individual(s):</td>
<td></td>
</tr>
</tbody>
</table>

Measure: Final project for CIMT 620	
Direct - Student Artifact	
Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.	
Target:	
Implementation Plan (timeline):	
Responsible Individual(s):

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 2: Development

Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation),
which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

▼ Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

▼ Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative
component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 3: Utilization

Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

Measure: Case study project for CIMT 630

Direct - Student Artifact

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and its utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project's requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at
a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMT 543

Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.
This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Standard 4: Management

Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

Measure: Educational software program or workshop development

- **Direct - Student Artifact**

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Final project for CIMT 620

- **Direct - Student Artifact**

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):

Responsible Individual(s):

Standard 5: Evaluation
Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor
provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

- **Measure:** Evaluation project in CIMT 620
 Direct - Other

Details/Description: This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

- **Measure:** Final project for CIMT 620
 Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

- **Measure:** Final project of CIMT 689
 Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners)
following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMIT 689 is a course at a more advanced level than CIMIT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Projects in CIMIT 543

Direct - Student Artifact

Details/Description: CIMIT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMIT 543. CIMIT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate's ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objectives. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMIT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational
technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Assessment Findings
Finding per Measure

MS in Educational Technology Outcome Set - AECT Standards (Oct. 2014)

<table>
<thead>
<tr>
<th>Standard 1: Design</th>
<th>Measure: Educational software program or workshop development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates</td>
<td>Direct - Student Artifact</td>
</tr>
</tbody>
</table>

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

<table>
<thead>
<tr>
<th>Measure: Final project for CIMT 620</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Student Artifact</td>
</tr>
</tbody>
</table>
Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

No Findings Added

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in
educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Projects in CIMT 543</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning Center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:
Implementation Plan (timeline):
Standard 2: Development

Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Final project for CIMT 620

Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):
Findings for Final project for CIMT 620

No Findings Added

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL).

In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.
Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Projects in CIMT 543</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Supervised field work</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Standard 3: Utilization

Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

Measure: Case study project for CIMT 630
Direct - Student Artifact

Details/Description: The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and its utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.
Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Case study project for CIMT 630

No Findings Added

Measure: Educational software program or workshop development
Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:
Implementation Plan (timeline):
Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:
Implementation Plan (timeline):
Responsible Individual(s):
Findings for Final project for CIMT 620

No Findings Added

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE
model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Projects in CIMT 543</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

** Measure:** Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master's classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

<table>
<thead>
<tr>
<th>Findings for Supervised field work</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Findings Added</td>
</tr>
</tbody>
</table>

Standard 4: Management

Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

** Measure:** Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No
matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620

No Findings Added

Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.
The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689

No Findings Added

Measure: Supervised field work

Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

No Findings Added

Standard 5: Evaluation

Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.

Measure: Educational software program or workshop development

Direct - Student Artifact

Details/Description: This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based
on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Educational software program or workshop development

No Findings Added

Measure: Evaluation project in CIMT 620
Direct - Other

Details/Description: This assessment provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Evaluation project in CIMT 620

No Findings Added

Measure: Final project for CIMT 620
Direct - Student Artifact

Details/Description: This assessment provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project for CIMT 620
Measure: Final project of CIMT 689
Direct - Student Artifact

Details/Description: This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Final project of CIMT 689
No Findings Added

Measure: Projects in CIMT 543
Direct - Student Artifact

Details/Description: CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the "ASSURE" model from Smaldino, Llowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate's ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates
were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Projects in CIMT 543

No Findings Added

Measure: Supervised field work
Direct - Student Artifact

Details/Description: This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Target:

Implementation Plan (timeline):

Responsible Individual(s):

Findings for Supervised field work

No Findings Added

Overall Recommendations

No text specified

Overall Reflection

No text specified

Action Plan

Status Report
2016-2017 Assessment Cycle

Assessment Plan

Assessment Findings
2017-2018 Assessment Cycle

- Assessment Plan

- Assessment Findings
2018-2019 Assessment Cycle

Assessment Plan

Assessment Findings
2019-2020 Assessment Cycle

Assessment Plan

Assessment Findings
Appendix

A. Educational Technology (Curriculum Map)
B. SPA Report_2015.docx (Word Document (Open XML))
F. MS_in_Ed_Tech.pdf (Adobe Acrobat Document)
Program Report for the Masters Preparation of Educational Technologist and Media Specialist
Association for Educational Communications and Technology (AECT) Option A

These standards can be used for program reports submitted through Spring 2010 (2/1/10). Beginning in Fall 2010 all programs must use the 2008 standards NATIONAL COUNCIL FOR ACCREDITATION OF TEACHER EDUCATION

<table>
<thead>
<tr>
<th>COVER SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Institution Name</td>
</tr>
<tr>
<td>Indiana State University</td>
</tr>
<tr>
<td>2. State</td>
</tr>
<tr>
<td>Indiana</td>
</tr>
<tr>
<td>3. Date submitted</td>
</tr>
<tr>
<td>MM</td>
</tr>
<tr>
<td>03</td>
</tr>
<tr>
<td>4. Report Preparer's Information:</td>
</tr>
<tr>
<td>Name of Preparer: Feng-Qi Lai</td>
</tr>
<tr>
<td>Phone: Ext. (812) 237-2934</td>
</tr>
<tr>
<td>E-mail: Feng-Qi.Lai@indstate.edu</td>
</tr>
<tr>
<td>5. NCATE Coordinator's Information:</td>
</tr>
<tr>
<td>Name: Feng-Qi Lai</td>
</tr>
<tr>
<td>Phone: Ext. (812) 237-2934</td>
</tr>
<tr>
<td>E-mail: Feng-Qi.Lai@indstate.edu</td>
</tr>
<tr>
<td>6. Name of institution's program</td>
</tr>
<tr>
<td>Master of Science in Educational Technology</td>
</tr>
<tr>
<td>7. NCATE Category</td>
</tr>
<tr>
<td>Educational Computing & Technology</td>
</tr>
<tr>
<td>8. Grade levels(^1) for which candidates are being prepared</td>
</tr>
<tr>
<td>Not applicable</td>
</tr>
<tr>
<td>(^1) e.g. K - 6, K-12, 7 -12</td>
</tr>
<tr>
<td>9. Program Type</td>
</tr>
<tr>
<td>☐ Other School Personnel</td>
</tr>
<tr>
<td>☑ Unspecified</td>
</tr>
<tr>
<td>10. Degree or award level</td>
</tr>
</tbody>
</table>
11. Is this program offered at more than one site?
- Yes
- No

12. If your answer is "yes" to above question, list the sites at which the program is offered

13. Title of the state license for which candidates are prepared
- Not applicable

14. Program report status:
- Initial Review
- Response to One of the Following Decisions: Further Development Required or Recognition with Probation
- Response to National Recognition With Conditions

15. State Licensure requirement for national recognition:
NCATE requires 80% of the program completers who have taken the test to pass the applicable state licensure test for the content field, if the state has a testing requirement. Test information and data must be reported in Section III. Does your state require such a test?
- Yes
- No

SECTION I - CONTEXT

1. Description of any state or institutional policies that may influence the application of AECT standards. (Response limited to 4,000 characters)
This is not a licensure program; therefore, the decision to use AECT standards was made at the department and program level. This decision was made because AECT “is a professional association of thousands of educators and others whose activities are directed towards improving instruction through technology. Technology is interpreted as process, not merely in terms of hardware (such as computers or television or projectors), but in terms of learners and their relationship to the people, events, places, and things through which they learn.” (http://www.aect.org/About/History.asp). It has a long history in the educational technology field since 1923 and “it is the national and international spokesperson for the improvement of instruction; and, it is the world's largest publisher of information concerning a wide range of instructional technology.” (http://www.aect.org/About/History.asp).

2. Description of the field and clinical experiences required for the program, including the number of hours for early field experiences and the number of hours/weeks for student teaching or internships. (Response limited to 8,000 characters)
CIMT 793: This is supervised field work as practicum after the student has taken all other courses required on the program of study. The student works independently on an educational technology project with a professor at a higher education institution including Indiana State University or an educational technology organization under professional supervision provided by the university or the organization. This course is designed to provide the student with experiences requiring an increasing degree of self-direction and responsibility.

By the completion of the course, the student needs to submit the project to the course instructor, do a presentation in a class meeting, submit a detailed student self-report including the answers to the following questions:
1. What project have you done?
2. What is the need for this project?
3. Who are the target learners/users?
4. What are the learning objectives
5. What is the content area?
6. Which part is your contribution to this project? (Describe the task that you have done with this project.)
7. How did you do it? Why did you do it this way?
8. How much time have you spent on this project?
9. What skills and knowledge that you have learned from the Educational Technology program have helped you with this project?
10. What have you learned from doing this project?
The supervisor needs to fill out two evaluation forms. One form is used for evaluating the student’s work competency and attitude in general. The evaluation is on a 5-point scale. The criteria include:
1. Quality meets project requirements
2. Completion of the required project
3. Project meets the deadline
4. Work proficiency
5. Work efficiency
6. Work attitude
and general comments.

The other form is used for evaluating how well the student meets the AECT standards:
1. Demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles, theories, and research associated with instructional systems design, message design, instructional strategies, and learner characteristics.
2. Demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences by applying principles, theories, and research related to print, audiovisual, computer based, and integrated technologies.
3. Demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles, theories, and research related to media utilization, diffusion, implementations, and policymaking.
4. Demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles, theories, and research related to project, resources, delivery system, and information management.
5. Demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles, theories, and research related to problem analysis, criterion referenced measurement, formative and summative evaluation, and long-range planning. The evaluation is on a scale of exceeds expectations, meets expectations, does not meet expectations, and no basis to evaluate.

This is a three-credit-hour course. The student is required to complete a project that requires 180 hours’ work.

3. Please attach files to describe a program of study that outlines the courses and experiences required for candidates to complete the program. The program of study must include course titles. (This information may be provided as an attachment from the college catalog or as a student advisement sheet.)

<table>
<thead>
<tr>
<th>Program of Study</th>
</tr>
</thead>
</table>

See Attachments panel below.

4. This system will not permit you to include tables or graphics in text fields. Therefore any tables or charts must be attached as files here. The title of the file should clearly indicate the content of the file. Word documents, pdf files, and other commonly used file formats are acceptable.

| This file contains course descriptions of the courses in the program of study. |

See Attachments panel below.

5. Candidate Information

Directions: Provide three years of data on candidates enrolled in the program and completing the program, beginning with the most recent academic year for which numbers have been tabulated. Report the data separately for the levels/tracks (e.g., baccalaureate, post-baccalaureate, alternate routes, master’s, doctorate) being addressed in this report. Data must also be reported separately for programs offered at multiple sites. Update academic years (column 1) as appropriate for your data span. Create additional tables as necessary.

<table>
<thead>
<tr>
<th>Program:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
</tr>
<tr>
<td>2008-2009</td>
</tr>
<tr>
<td>2009-2010</td>
</tr>
<tr>
<td>2010-2011</td>
</tr>
</tbody>
</table>

(2) NCATE uses the Title II definition for program completers. Program completers are persons who have met all the requirements of a state-approved teacher preparation program. Program completers include all those who are documented as having met such requirements. Documentation may take the form of a degree, institutional certificate, program credential, transcript, or other written proof of having met the program’s requirements.

6. Faculty Information

Directions: Complete the following information for each faculty member responsible for professional coursework, clinical supervision, or administration in this program.

<table>
<thead>
<tr>
<th>Faculty Member Name</th>
<th>Feng-Qi Lai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Degree, Field, & University(3)</td>
<td>Ph.D., Educational Technology, Purdue University</td>
</tr>
<tr>
<td>Assignment: Indicate the role of the</td>
<td></td>
</tr>
</tbody>
</table>

SECTION II - LIST OF ASSESSMENTS

1. In this section, list the 6-8 assessments that are being submitted as evidence for meeting the AECT standards. All programs must provide a minimum of six assessments. If your state does not require a state licensure test in the content area, you must substitute an assessment that documents candidate attainment of content knowledge in #1 below. For each assessment, indicate the type or form of the assessment and when it is administered in the program. (Response limited to 250 characters each field)

<table>
<thead>
<tr>
<th>Type and Number of Assessment</th>
<th>Name of Assessment (10)</th>
<th>Type or Form of Assessment (11)</th>
<th>When the Assessment Is Administered (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment #1: Licensure assessment, or other content-based assessment (required)</td>
<td>Design, develop, and critique a workshop or educational software</td>
<td>Project, paper, and presentation</td>
<td>Required course (CIMT 640, an introductory course to the field)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) e.g., Ph.D. in Curriculum & Instruction, University of Nebraska.
(4) e.g., PhD in Curriculum & Instruction, University of Nebraska.
(5) e.g., faculty, academic advisor, program chair.
(6) e.g., faculty, clinical supervisor, department chair, administrator
(7) e.g., professor, associate professor, assistant professor, adjunct professor, instructor
(8) e.g., faculty member, clinical supervisor, department chair, administrator.
(9) e.g., professor, associate professor, assistant professor, adjunct professor, instructor
(10) A book titled Mastering Computer Skills through Experiential Learning was published and recognized at the 25th Authors and Artists Recognition, Cunningham Memorial Library, ISU, 2010. Invited by six universities in China to do 12 presentations in the past three years. Served on the editorial/review board for two journals and two handbooks.
(11) A book titled Mastering Computer Skills through Experiential Learning was published and recognized at the 25th Authors and Artists Recognition, Cunningham Memorial Library, ISU, 2010. Invited by six universities in China to do 12 presentations in the past three years. Served on the editorial/review board for two journals and two handbooks.
(12) South Vigo High School liaison, Fall 2010
Assessment #2: Assessment of content knowledge in instructional or educational communications and technology (required)	Develop instructional materials	Required course (CIMT 620, a fundamental instructional design course)
Assessment #3: Assessment of candidate ability to plan (required)	Design instructional strategies	Project
Assessment #4: Assessment of student teaching/internship/practicum etc. (required)	Supervised field work: an independent comprehensive project in educational technology	Project, report, and presentation
Assessment #5: Assessment of candidate effect on student/client learning (required)	Write learning objectives and assessments	Project
Assessment #6: Additional assessment that addresses AECT standards (required)	Analyze learning context, target learners, and learning tasks	Projects
Assessment #7: Additional assessment that addresses AECT standards (optional)	Conduct the formative evaluation of instructional materials	Project
Assessment #8: Additional assessment that addresses AECT standards (optional)	Design and develop a training manual	Project

(10) Identify assessment by title used in the program; refer to Section IV for further information on appropriate assessment to include.
(11) Identify the type of assessment (e.g., essay, case study, project, comprehensive exam, reflection, state licensure test, portfolio).
(12) Indicate the point in the program when the assessment is administered (e.g., admission to the program, admission to student teaching/internship, required courses [specify course title and numbers], or completion of the program).

SECTION III - RELATIONSHIP OF ASSESSMENT TO STANDARDS

For each AECT standard on the chart below, identify the assessment(s) in Section II that address the standard. One assessment may apply to multiple AECT standards.

1. AECT STANDARD FOR MASTERS AECT PREPARATION

<table>
<thead>
<tr>
<th>Standard</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design. Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Development. Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print, audiovisual, computer-based, and integrated technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Utilization. Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Management. Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Evaluation. Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION IV - EVIDENCE FOR MEETING STANDARDS

DIRECTIONS: The 6-8 key assessments listed in Section II must be documented and discussed in Section IV. Taken as a whole, the assessments must demonstrate candidate mastery of the SPA standards. The key assessments should be required of all candidates. Assessments and scoring guides and data charts should be aligned with the SPA standards. This means that the concepts in the SPA standards should be apparent in the assessments and in the scoring guides to the same depth, breadth, and specificity as in the SPA standards. Data tables should also be aligned with the SPA standards. The data should be presented, in general, at the same level it is collected. For example, if a rubric collects data on 10 elements [each relating to specific SPA standard(s)], then the data chart should report the data on each of the elements rather than reporting a cumulative score.

In the description of each assessment below, the SPA has identified potential assessments that would be appropriate. Assessments have been organized into the following three areas to be aligned with the elements in NCATE’s unit standard 1:
• Content knowledge (Assessments 1 and 2)
• Pedagogical and professional knowledge, skills and dispositions (Assessments 3 and 4)
• Focus on student learning (Assessment 5)

Note that in some disciplines, content knowledge may include or be inextricable from professional knowledge. If this is the case, assessments that combine content and professional knowledge may be considered "content knowledge" assessments for the purpose of this report.

For each assessment, the compiler should prepare one document that includes the following items:

(1) A two-page narrative that includes the following:
 a. A brief description of the assessment and its use in the program (one sentence may be sufficient);
 b. A description of how this assessment specifically aligns with the standards it is cited for in Section III. Cite SPA standards by number, title, and/or standard wording.
 c. A brief analysis of the data findings;
 d. An interpretation of how that data provides evidence for meeting standards, indicating the specific SPA standards by number, title, and/or standard wording; and

(2) Assessment Documentation
 e. The assessment tool itself or a rich description of the assessment (often the directions given to candidates);
 f. The scoring guide for the assessment; and
 g. Charts that provide candidate data derived from the assessment.

The responses for e, f, and g (above) should be limited to the equivalent of five text pages each, however in some cases assessment instruments or scoring guides may go beyond five pages.

Note: As much as possible, combine all of the files for one assessment into a single file. That is, create one file for Assessment #4 that includes the two-page narrative (items a – d above), the assessment itself (item e above), the scoring guide (item f above, and the data chart (item g above). Each attachment should be no larger than 2 mb. Do not include candidate work or syllabi. There is a limit of 20 attachments for the entire report so it is crucial that you combine files as much as possible.

1. State licensure tests or professional examinations of content knowledge in the field of instructional or educational communications and technology. AECT standards addressed in this entry could include any or all of Standards 1-5. If your state does not require licensure tests or professional examinations in the content area, data from another assessment must be presented to document candidate attainment of content knowledge. If you do not have a licensure or professional examination of content knowledge, provide another content-based assessment, as described under # 2 below. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

| This is not a licensure program; therefore, the decision to use AECT standards was made at the department and program level. This program is project-based. Examinations are not considered relevant assessments for this program. Students demonstrate their knowledge and skills in this field through projects. |
| See Attachments panel below. |

2. Assessment of content knowledge in the field of instructional or educational communications and technology. AECT standards addressed in this assessment could include any or all of Standards 1-5. Examples of assessments include comprehensive examinations, course grades, content major projects or portfolio tasks. (13) (Answer Required)

Provide assessment information as outlined in the directions for Section IV

Please see the file attached.
For program review purposes, there are two ways to list a portfolio as an assessment. In some programs a portfolio is considered a single assessment and scoring criteria (usually rubrics) have been developed for the contents of the portfolio as a whole. In this instance, the portfolio would be considered a single assessment. However, in many programs a portfolio is a collection of candidate work—and the artifacts included.

3. Assessment that demonstrates candidates can effectively plan and implement appropriate teaching and learning experiences. AECT standards that could be addressed in this assessment include any or all of Standards 1-5. Examples of assessments include the evaluation of candidates’ abilities to apply elements of the instructional design process, create learning environments, develop training, staff development or intervention plans. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

See Attachments panel below.

4. Assessment that demonstrates candidates’ knowledge, skills, and dispositions are applied effectively in practice. AECT standards that could be addressed in this assessment include any or all of Standards 1-5. The assessment instrument used in the internship, practicum or other field experiences (action research qualifies as a field experience) should be submitted. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

Please see the file attached.

See Attachments panel below.

5. Assessment that demonstrates candidate effects on the provision of supportive learning environments for student or client learning. AECT standards that could be addressed in this assessment include any or all of Standards 1-5. Examples of assessments include those based on student or client work samples, action research, portfolio tasks, case studies, follow-up studies, and employer or client surveys. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

Please see the file attached.

See Attachments panel below.

6. Additional assessment that addresses AECT standards. Examples of assessments include evaluations of field experiences, case studies, portfolio tasks, licensure tests not reported in #1, and follow-up studies. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

Please see the file attached.

See Attachments panel below.

7. Additional assessment that addresses AECT standards. Examples of assessments include evaluations of field experiences, case studies, portfolio tasks, licensure tests not reported in #1, and follow-up studies.

Provide assessment information as outlined in the directions for Section IV

Please see the file attached.

See Attachments panel below.

8. Additional assessment that addresses AECT standards. Examples of assessments include evaluations of field experiences, case studies, portfolio tasks, licensure tests not reported in #1, and follow-up studies.

Provide assessment information as outlined in the directions for Section IV
SECTION V - USE OF ASSESSMENT RESULTS TO IMPROVE PROGRAM

1. Evidence must be presented in this section that assessment results have been analyzed and have been or will be used to improve candidate performance and strengthen the program. This description should not link improvements to individual assessments but, rather, it should summarize principal findings from the evidence, the faculty's interpretation of those findings, and changes made in (or planned for) the program as a result. Describe the steps program faculty has taken to use information from assessments for improvement of both candidate performance and the program. This information should be organized around (1) content knowledge, (2) professional and pedagogical knowledge, skill, and dispositions, and (3) student learning.

(Response limited to 12,000 characters)

From the data provided for two consecutive semesters/years when the courses were offered, four students were identified as “does not meet expectations” (below 70% of the grading scale). The four students were all international students. One student had a family problem and consistently failed to complete the required learning tasks. She finally left ISU back to her home country. The other three international students had more or less language deficiencies. They had certain difficulties with understanding of the project requirements. Of the three, one student plagiarized three paragraphs from a previous student’s project although at the beginning of the semester, all students did a test on rules and policies that clearly stated plagiarism was not allowed. According to the student, he did not realize what he did was plagiarism because he thought the three paragraphs he copied were general information. Although the data revealed failing to meet expectations was not caused by deficiencies in content knowledge, the fact suggested that the program or department needs to 1) be stricter with language requirement for the candidates to get on the program and 2) further reinforce the rules and policies at a higher level to ensure students’ thorough understanding of the rules and policies.

Although this program is under initial review and data provided in this report are for the most recent two consecutive semesters/years, faculty members on the program have been constantly improving the program during the past years each time needed improvement was identified.

Needed improvement identified:

• Students’ instructional strategy development skills need to be improved.
• Students’ practical experience in the real world needs to be addressed.
• Students’ management skills need to be enhanced.
• International students’ better understanding of the requirements of the courses needs to be ensured.
• There were some missing data. The program’s data collection and management system needs to be improved.

Actions taken or to be taken:

• A new required course CIMT 689 Learning Theory and Instructional Strategies was developed in fall 2008 to strengthen students’ understanding of learning theories and capability of bridging theory with practice. Students’ instructional strategy development skills are being improved.
• A new elective course CIMT 720 Advanced Instructional Design was developed to enhance students’ communication and work experience in the real world. This course was developed in spring 2004 as an independent study course and later in fall 2008 as a required course for students on the Ph.D. programs and an elective course for the Master’s students on the Educational Technology program. Students’ communication and community-engagement skills are being improved.
• CIMT 657 was redesigned to enhance students planning, developing, and project management skills. The old course title was Computer Projects (students did small projects) focusing on skills of using technology. The redesigned course focuses on courseware design and development using Web authoring tools. Project requirements go beyond analysis, design, and development. Students also learn professional planning and systematic project management skills. Students’ projects reflect their planning and management skills being improved.
• All online required courses were offered once a year in a face-to-face hybrid format. It not just solves the problem that international students cannot take more than one online course each semester, but also provides an opportunity for international students to communicate more face-to-face with faculty members and for the instructor to observe international students’ needs more directly.
• CIMT 630 is a well-designed required course. The diffusion project in this course well meets AECT standards. We are not able to include this assessment in this report because we are not able to provide data for the most recent two consecutive years the courses were offered. The instructor for the last two years left Indiana State University without leaving the data for the program analysis. The data from spring 2011 will be collected and the management system for the program will be improved in the future.

Although there is no deficiency found in the content knowledge or skills, improvements are always needed. In order to further improve students’ critical thinking skills, the faculty on the program is planning to redesign the program in a more learner-centered manner to enhance constructive approach in teaching and learning.

SECTION VI - FOR REVISED REPORTS OR RESPONSE TO CONDITIONS REPORTS ONLY

1. For Revised Reports: Describe what changes or additions have been made to address the standards that were not met in the
original submission. Provide new responses to questions and/or new documents to verify the changes described in this section. Specific instructions for preparing a Revised Report are available on the NCATE web site at http://www.ncate.org/Accreditation/ProgramReview/ProgramReportSubmission/RevisedProgramReports/tabid/453/Default.aspx

For Response to Conditions Reports: Describe what changes or additions have been made to address the conditions cited in the original recognition report. Provide new responses to questions and/or new documents to verify the changes described in this section. Specific instructions for preparing a Response to Conditions Report are available on the NCATE web site at http://www.ncate.org/Accreditation/ProgramReview/ProgramReportSubmission/ResponseToConditionsReport/tabid/454/Default.aspx

(Response limited to 24,000 characters.)

Please click "Next"

This is the end of the report. Please click "Next" to proceed.
<table>
<thead>
<tr>
<th>Institution Name</th>
<th>Indiana State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indiana</td>
</tr>
<tr>
<td>Date submitted</td>
<td>03/15/2011</td>
</tr>
</tbody>
</table>

Report Preparer's Information:

<table>
<thead>
<tr>
<th>Name of Preparer:</th>
<th>Susan J. Kiger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: Ext.</td>
<td>(812) 237-2960</td>
</tr>
<tr>
<td>E-mail:</td>
<td>Susan.Kiger@indstate.edu</td>
</tr>
</tbody>
</table>

NCATE Coordinator's Information:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: Ext.</td>
<td></td>
</tr>
<tr>
<td>E-mail:</td>
<td></td>
</tr>
</tbody>
</table>

Name of institution's program

Library Media Additional Licensure and M.S. in Educational Technology with specialization in Library Media

NCATE Category

School Library Media Specialist

Grade levels\(^{(1)}\) for which candidates are being prepared

Grade levels are restricted to that of the practitioner's initial license. This may be grades k-6; k-12; 5-12

\(^{(1)}\) e.g. K-6, K-12, 7-12

Program Type

- Other School Personnel
- Unspecified

Degree or award level

- Baccalaureate
- Post Baccalaureate
Is this program offered at more than one site?
- Yes
- No

If your answer is "yes" to above question, list the sites at which the program is offered

Title of the state license for which candidates are prepared

School Librarian

Program report status:
- Initial Review
- Response to One of the Following Decisions: Further Development Required or Recognition with Probation
- Response to National Recognition With Conditions

State Licensure requirement for national recognition:
NCATE requires 80% of the program completers who have taken the test to pass the applicable state licensure test for the content field, if the state has a testing requirement. Test information and data must be reported in Section III. Does your state require such a test?
- Yes
- No

SECTION 1 - CONTEXT

1. Description of any state or institutional policies that may influence the application of ALA/AASL standards. (Response limited to 4,000 characters)
ALA/AASL standards are applied under the Indiana Content Standards for Educators (http://www.doe.in.gov/educatorlicensing/pdf/SchoolLibrarian.pdf). It is specifically stated: "The Indiana Educator Standards for School Librarian describe the knowledge and skills that school librarians need to help students achieve the learning outcomes defined by the American Association of School Librarians (AASL) Standards for the 21st-Century Learner." The Indiana standards were designed to meet REPA (Rules for Educator Preparation and Accountability) licensing requirements as well as Common Core National Standards.

2. Description of the field and clinical experiences required for the program, including the number of hours for early field experiences and the number of hours/weeks for student teaching or internships. (Response limited to 8,000 characters)
CIMT 659, Practicum in Library Media, requires a Field Experience consisting of 120 hours of work in a school, public, and/or other library setting under the supervision of a professional librarian or administrator who submits a formal evaluation of the student’s work. It focuses on a demonstration of proficiency in all of the standards incorporated within the media program. An e-portfolio, including reflective essays addressing each of the course standards and documenting how standard is met, is submitted for grading. In the portfolio students draw upon their work throughout the program to synthesize and analyze their growth as librarians, the skills they have acquired, and the standards they have mastered. A goals and challenges essay requires them to consider and reflect on how they will put into practice what they have learned. 659 is the final course taken in the program and its culminating learning experience.

3. Please attach files to describe a program of study that outlines the courses and experiences required for candidates to complete the program. The program of study must include course titles. (This information may be provided as an attachment from the college catalog or as a student advisement sheet.)

See Attachments panel below.

4. This system will not permit you to include tables or graphics in text fields. Therefore any tables or charts must be attached as files here. The title of the file should clearly indicate the content of the file. Word documents, pdf files, and other commonly used file formats are acceptable.
Candidate Information
Directions: Provide three years of data on candidates enrolled in the program and completing the program, beginning with the most recent academic year for which numbers have been tabulated. Report the data separately for the levels/tracks (e.g., baccalaureate, post-baccalaureate, alternate routes, master’s, doctorate) being addressed in this report. Data must also be reported separately for programs offered at multiple sites. Update academic years (column 1) as appropriate for your data span. Create additional tables as necessary.

<table>
<thead>
<tr>
<th>Program: Non-degree Library Media - Additional Licensure</th>
<th>Academic Year</th>
<th># of Candidates Enrolled in the Program</th>
<th># of Program Completers(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008-2009</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2009-2010</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2010-2011</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program: M.S. Educational Technology with Library Media Specialization</th>
<th>Academic Year</th>
<th># of Candidates Enrolled in the Program</th>
<th># of Program Completers(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008-2009</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2009-2010</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010-2011</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) NCATE uses the Title II definition for program completers. Program completers are persons who have met all the requirements of a state-approved teacher preparation program. Program completers include all those who are documented as having met such requirements. Documentation may take the form of a degree, institutional certificate, program credential, transcript, or other written proof of having met the program's requirements.

Faculty Information
Directions: Complete the following information for each faculty member responsible for professional coursework, clinical supervision, or administration in this program.

<table>
<thead>
<tr>
<th>Faculty Member Name</th>
<th>Shelley Arvin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Degree, Field, & University(3)</td>
<td>MA/MS Information Science, Indiana University</td>
</tr>
<tr>
<td>Assignment: Indicate the role of the faculty member(4)</td>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Rank(5)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Tenure Track</td>
<td>YES</td>
</tr>
<tr>
<td>Teaching or other professional experience in P-12 schools(9)</td>
<td>None, although did coordinate K-12 education efforts for a previous job (before ISU).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Member Name</th>
<th>Thomas Patterson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Degree, Field, & University(3)</td>
<td>MA History, MLS Library Science, University of Pittsburgh</td>
</tr>
<tr>
<td>Assignment: Indicate the role of the faculty member(4)</td>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Rank(5)</td>
<td>Adjunct</td>
</tr>
<tr>
<td>Tenure Track</td>
<td>YES</td>
</tr>
<tr>
<td>Scholarship(6), Leadership in Professional Associations, and Service (7):List up to 3 major contributions in the past 3 years(8)</td>
<td>Investigation of public library services in London, UK & scheduled investigation of public library services in Edinburgh, Scotland in preparation for publication and course development.</td>
</tr>
<tr>
<td>Teaching or other professional experience in P-12 schools(9)</td>
<td>None</td>
</tr>
<tr>
<td>Faculty Member Name</td>
<td>Leslie Preddy</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Highest Degree, Field, & University</td>
<td>M.S. Educational Technology with Library Media Specialization; BS School Library Media Services, Indiana State University</td>
</tr>
<tr>
<td>Assignment: Indicate the role of the faculty member</td>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Rank</td>
<td>Adjunct</td>
</tr>
<tr>
<td>Tenure Track</td>
<td>YES</td>
</tr>
<tr>
<td>Teaching or other professional experience in P-12 schools</td>
<td>Library Media Specialist at Perry Meridian Middle School, Indianapolis, IN 1992 to present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Member Name</th>
<th>H. Scott Davis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Degree, Field, & University</td>
<td>Ed.D, Curriculum and Instruction; Minor in Library Science, Texas A&M Commerce. Holds MLS - University of Alabama</td>
</tr>
<tr>
<td>Assignment: Indicate the role of the faculty member</td>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Rank</td>
<td>Professor</td>
</tr>
<tr>
<td>Tenure Track</td>
<td>YES</td>
</tr>
<tr>
<td>Scholarship, Leadership in Professional Associations, and Service</td>
<td>Chair CIMT Graduate Committee, Library Taskforce on MLS feasibility, Bayh College of Education Taskforce on Promotion and Tenure.</td>
</tr>
<tr>
<td>Teaching or other professional experience in P-12 schools</td>
<td>School Library Media Specialist - Boddie Junior High School, Milledgeville, GA</td>
</tr>
</tbody>
</table>

SECTION II - LIST OF ASSESSMENTS

In this section, list the 6-8 assessments that are being submitted as evidence for meeting the ALA standards. All programs must provide a minimum of six assessments. If your state does not require a state licensure test in the content area, you must substitute an assessment that documents candidate attainment of content knowledge in #1 below. For each assessment, indicate the type or form of the assessment and when it is administered in the program.

Please provide following assessment information (Response limited to 250 characters each field)

<table>
<thead>
<tr>
<th>Type and Number of Assessment</th>
<th>Name of Assessment</th>
<th>Type or Form of Assessment</th>
<th>When the Assessment Is Administered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment #1: Licensure assessment, or other content-based assessment (required)</td>
<td>Grade Point Average</td>
<td>Grade Point Average at program completion</td>
<td>Program completion</td>
</tr>
<tr>
<td>Assessment #2: Assessment of content knowledge in the field of school library media (required)</td>
<td>CIMT 659 Portfolio</td>
<td>Portfolio</td>
<td>Culminating activity of the program given in the culminating course - CIMT 659</td>
</tr>
</tbody>
</table>
SECTION III - RELATIONSHIP OF ASSESSMENT TO STANDARDS

For each ALA standard on the chart below, identify the assessment(s) in Section II that address the standard. One assessment may apply to multiple ALA standards.

1. School library media candidates encourage reading and lifelong learning by stimulating interests and fostering competencies in the effective use of ideas and information. They apply a variety of strategies to ensure access to resources and information in a variety of formats to all members of the learning community. Candidates promote efficient and ethical information-seeking behavior as part of the school library media program and its services.

1.1 Efficient and ethical information-seeking behavior
Candidates model strategies to locate, evaluate and use information for specific purposes. Candidates identify and address student interests and motivations. Candidates interact with the learning community to access, communicate and interpret intellectual content. Candidates adhere to and communicate legal and ethical policies.

1.2 Literacy and reading
Candidates are aware of major trends in reading material for children and youth. Candidates select materials in multiple formats to address the needs and interests of diverse young readers and learners. Candidates use a variety of strategies to promote leisure reading. They model their personal enjoyment of reading in order to promote the habits of creative expression and lifelong reading.

1.3 Access to information
Candidates support flexible and open access for the library media center and its services. Candidates identify barriers to equitable access to resources and services. Candidates facilitate access to information in print, nonprint, and electronic formats. Candidates comply with and communicate the legal and ethical codes of the profession.

1.4 Stimulating Learning Environment
Candidates demonstrate ways to establish and maintain a positive educational climate in the library media center. Candidates identify relationships among facilities, programs, and environment that impact student...
2. Teaching and Learning. School library media candidates model and promote collaborative planning with classroom teachers in order to teach concepts and skills of information processes integrated with classroom content. They partner with other education professionals to develop and deliver an integrated information skills curriculum. Candidates design and implement instruction that engages the student’s interests, passions, and needs which drive their learning.

<table>
<thead>
<tr>
<th>2.1 Knowledge of learners and learning</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates design library media instruction that assesses learner interests, needs, instructional methodologies, and information processes to assure that each is integral to information skills instruction. Candidates support the learning of all students and other members of the learning community, including those with diverse learning styles, abilities and needs. Information skills instruction is based on student interests and learning needs and is linked to student achievement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 Effective and knowledgeable teacher</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates work with classroom teachers to co-plan, co-teach, and co-assess information skills instruction. The library media specialist as teacher of information skills makes use of a variety of instructional strategies and assessment tools. Candidates analyze the role of student interest and motivation in instructional design. Student learning experiences are created, implemented and evaluated in partnership with teachers and other educators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3 Information literacy curriculum</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates employ strategies to integrate the information literacy curriculum with content curriculum. Candidates incorporate technology to promote efficient and equitable access to information beyond print resources. Candidates assist students to use technology to access, analyze, and present information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Collaboration and Leadership. School library media candidates provide leadership and establish connections with the greater library and education community to create school library media programs that focus on students learning and achievement; encourage the personal and professional growth of teachers and other educators, and model the efficient and effective use of information and ideas.

<table>
<thead>
<tr>
<th>3.1 Connection with library community</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates demonstrate the potential for establishing connections to other libraries and the larger library community for resource sharing, networking, and developing common policies and procedures. Candidates articulate the role of their professional associations and journals in their own professional growth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2 Instructional partner</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates model, share, and promote ethical and legal principles of education and librarianship. Candidates acknowledge the importance of participating on school and district committees and in faculty staff development opportunities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.3 Educational leader</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates are able to articulate the relationship of the library media program with current educational trends and important issues. Candidates recognize the role of other educational professionals and professional associations. Candidates translate for the school the ways in which the library program can enhance school improvement efforts. Candidates utilize information found in professional journals to improve library practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Program Administration. School library media candidates administer the library media program in order to support the mission of the school, and according to the principles of best practice in library science and program administration.

<table>
<thead>
<tr>
<th>4.1 Managing information resources: Selecting, Organizing, Using</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates select, analyze, and evaluate print, nonprint and electronic resources using professional selection tools and evaluation criteria to develop a quality collection designed to meet diverse curricular and personal needs. Candidates organize the library media facility and its collections – print, nonprint and electronic – according to standard accepted practice. Candidates support intellectual freedom and privacy of users. Candidates plan for efficient use of resources and technology to meet diverse user needs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.2 Managing program resources: Human, financial, physical</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates develop and evaluate policies and procedures that support the mission of the school and address specific needs of the library media program, such as collection development and maintenance, challenged materials and acceptable use policies. Candidates apply accepted management principles and practices that relate to personnel, financial and operational issues. Candidates plan adequate space for individuals, small groups and whole classes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.3 Comprehensive and collaborative strategic planning and assessment</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates collaborate with teachers and administrators to develop a library media program plan that aligns resources, services and information literacy standards with the school's goals and objectives. Candidates use data for decision-making.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIRECTIONS: The 6-8 key assessments listed in Section II must be documented and discussed in Section IV. Taken as a whole, the assessments must demonstrate candidate mastery of the SPA standards. The key assessments should be required of all candidates. Assessments and scoring guides and data charts should be aligned with the SPA standards. This means that the concepts in the SPA standards should be apparent in the assessments and in the scoring guides to the same depth, breadth, and specificity as in the SPA standards. Data tables should also be aligned with the SPA standards. The data should be presented, in general, at the same level it is collected. For example, if a rubric collects data on 10 elements [each relating to specific SPA standard(s)], then the data chart should report the data on each of the elements rather than reporting a cumulative score.

In the description of each assessment below, the SPA has identified potential assessments that would be appropriate. Assessments have been organized into the following three areas to be aligned with the elements in NCATE’s unit Standard 1:

• Content knowledge (Assessments 1 and 2)
• Pedagogical and professional knowledge, skills and dispositions (Assessments 3 and 4)
• Focus on student learning (Assessment 5)

Note that in some disciplines, content knowledge may include or be inextricable from professional knowledge. If this is the case, assessments that combine content and professional knowledge may be considered "content knowledge" assessments for the purpose of this report.

For each assessment, the compiler should prepare one document that includes the following items:

(1) A two-page narrative that includes the following:
 a. A brief description of the assessment and its use in the program (one sentence may be sufficient);
 b. A description of how this assessment specifically aligns with the standards it is cited for in Section III. Cite SPA standards by number, title, and/or standard wording.
 c. A brief analysis of the data findings;
 d. An interpretation of how that data provides evidence for meeting standards, indicating the specific SPA standards by number, title, and/or standard wording;
 and

(2) Assessment Documentation
 e. The assessment tool itself or a rich description of the assessment (often the directions given to candidates);
 f. The scoring guide for the assessment; and
 g. Charts that provide candidate data derived from the assessment.

The responses for e, f, and g (above) should be limited to the equivalent of five text pages each, however in some cases assessment instruments or scoring guides may go beyond five pages.

Note: As much as possible, combine all of the files for one assessment into a single file. That is, create one file for Assessment 4 that includes the two-page narrative (items a – d above), the assessment itself (item e above), the scoring guide (item f above), and the data chart (item g above). Each attachment should be no larger than 2 mb. Do not include candidate work or syllabi. There is a limit of 20 attachments for the entire report so it is crucial that you combine files as much as possible.

Please name files as directed in the Guidelines for Preparing an NCATE Program Report found on the NCATE web site at the following URL: http://www.ncate.org/institutions/resourcesNewPgm.asp?ch=90

1. State licensure tests or professional examinations of content knowledge. ALA/AASL standards addressed in this entry could include any or all of standards 1-4. If your state does not require licensure tests or professional examinations in the content area, data from another assessment must be presented to document candidate attainment of content knowledge (Answer Required)

Provide assessment information as outlined in the directions for Section IV

See Attachments panel below.

2. Assessment of content knowledge in the field of school library media. ALA/AASL standards addressed in this assessment could include any or all of standards 1-4. Examples of assessments include comprehensive examinations, GPAs or grades portfolio tasks, comprehensive projects, or collaborative instruction (including staff development). (Answer Required)

Provide assessment information as outlined in the directions for Section IV

See Attachments panel below.
3. Assessment that demonstrates candidates can effectively plan to meet the needs of the school library media program. ALA/AASL standards that could be addressed in this assessment include any or all of standards 1-4. Examples of assessments include comprehensive planning activities (grants, website development, budget, collection development, program evaluation). (Answer Required)

Provide assessment information as outlined in the directions for Sections III and IV.

CIMT Library Media Assessment 3

See Attachments panel below.

4. Assessment that demonstrates candidates' knowledge, skills, and dispositions are applied are applied effectively in practice. ALA/AASL standards that could be addressed in this assessment include any or all of standards 1-4. The assessment instrument used in the internship or other clinical experiences (practicum, field experience, etc.) should be submitted. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

CIMT Library Media Assessment 4

See Attachments panel below.

5. Assessment that demonstrates candidate effects on the creation of supportive learning environments for student learning. ALA/AASL standards that could be addressed in this assessment include any or all of standards 1-4. Examples of assessments include those based on student work samples, portfolio tasks, and collaborative instruction. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

CIMT Library Media Assessment 5

See Attachments panel below.

6. Additional assessment that addresses ALA/AASL standards. The ALA/AASL program report must include assessments that incorporate collaborative instruction, comprehensive reading encouragement, and integration of technology. If assessments submitted for #1-5 do not include a focus on any or all of these three areas, assessments submitted for #6-8 should be used to meet this requirement. (Answer Required)

Provide assessment information as outlined in the directions for Section IV

CIMT Library Media Assessment 6

See Attachments panel below.

7. Additional assessment that addresses ALA/AASL standards. The ALA/AASL program report must include assessments that incorporate collaborative instruction, comprehensive reading encouragement, and integration of technology. If assessments submitted for #1-5 do not include a focus on any or all of these three areas, assessments submitted for #6-8 should be used to meet this requirement.

Provide assessment information as outlined in the directions for Section IV

CIMT Library Media Assessment 7

See Attachments panel below.

8. Additional assessment that addresses ALA/AASL standards. The ALA/AASL program report must include assessments that incorporate collaborative instruction, comprehensive reading encouragement, and integration of technology. If assessments submitted for #1-5 do not include a focus on any or all of these three areas, assessments submitted for #6-8 should be used to meet this requirement.
Evidence must be presented in this section that assessment results have been analyzed and have been or will be used to improve candidate performance and strengthen the program. This description should not link improvements to individual assessments but, rather, it should summarize principal findings from the evidence, the faculty’s interpretation of those findings, and changes made in (or planned for) the program as a result. Describe the steps program faculty has taken to use information from assessments for improvement of both candidate performance and the program. This information should be organized around (1) content knowledge, (2) professional and pedagogical knowledge, skill, and dispositions, and (3) student learning.

(Response limited to 12,000 characters)

Section V Narrative

The preceding sections of this report have provided descriptions and contexts for the assessments currently used in the school library media program. In addition, assessment instruments, grading rubrics and tabular data have been presented, along with brief analyses and interpretations of the data. The following sections identify areas for consideration in the near future by program faculty that will lead to program improvement. The suggestions herein will serve as the agenda for faculty discussions during the coming year with the goal of identifying strategies to make modifications toward program improvement. As part of these discussions faculty will need to prioritize strategic actions to undertake during the coming year.

Currently it is difficult to note definitive trends or patterns that would warrant immediate intervention; regardless, it is gratifying to note that thus far 100% of students have either met or exceeded expectations in all assessment areas for this review.

Content Knowledge (Assessments 1 and 2)

Analysis and interpretation of data associated with Content Knowledge (Assessment 1, Grade Point Average: Additional Licensure Program n=24, GPA trending upward from 3.54 in 2008-2009 to 3.94 in 2010-2011; Educational Technology with Library Media Specialization Program n=7, GPA trending slightly downward from 3.73 in 2008-2009 to 3.59 in 2010-2011; Assessment 2, Portfolio: n=21, cumulative mean is 2.64/3.0, range of means is 2.50-2.88) indicates a need for program faculty to address the following areas in the near future:

• Investigate the reliability of course-specific assignments/assessments in all program courses, but particularly CIMT 631 (Reference) and CIMT 659 (Practicum) which serve at the two primary midpoint and culminating data benchmarks.
• Investigate methods for the tracking non-completers of the program to determine reasons for non-completion.
• Investigate the feasibility of employing multiple readers of the practicum portfolio so as to establish clear inter-rater reliability

Professional and Pedagogical Knowledge, Skill, and Dispositions (Assessments 3 and 4)

Analysis and interpretation of data associated with Professional and Pedagogical Knowledge, Skill and Dispositions (Assessment 3, Reflective Essay: n=26; range of means is 2.43-2.86/3.0 and Assessment 4, Practicum: n=21; range of means is 2.50-3.0/3.0) indicates a need for program faculty to address the following areas in the near future:

• Although 100% of students met or exceeded expectations, inter-rater reliability is not yet established. There is need to review the way that field supervisors of the practicum are currently being oriented and trained with regard to the overall practicum experience, particularly the assessment used to evaluate student performance during the practicum. The goal of such a review would be to better ensure inter-rater reliability among supervisors of practicum students, regardless of the library setting in which they are serving.
• During the analysis and interpretation of the tabular data it became apparent that there is value in retaining the column to report instances of the “NB” (No Basis for assessing) option on the supervising librarians’ assessment—such an inclusion would add clarity to the data under review. Currently, the “NB” being excluded means that option must be inferred in the data review.
• Regarding dispositions associated with the standards, because dispositions are embedded in the standards, achievement can be inferred through our outcomes data (100% of students have met or exceeded expectations). Our unit is currently revisiting the forms and process for a generic dispositional assessment and attendant data collection; our Library Media program will be instituting their recommendations in the upcoming reporting period.

Student Learning (Assessment 5)

Analysis and interpretation of data associated with Student Learning indicates a need for program faculty to address the following areas in the near future:

• Despite 100% of students meeting or exceeding expectations in regard to this assessment, the overall number is small (n=21, cumulative mean of 2.86/3.0) and only collected at one point in the program. There is a need to investigate the feasibility of identifying one or more other measures of student performance in this area earlier in the program’s course sequence, e.g. a specific assignment/assessment in CIMT 513 (Topics in Library Media).
• The practicum portfolio and its multiple components are currently graded by one individual. Program faculty should consider the possibility of having multiple readers of the practicum portfolio to ensure inter-rater reliability.
Libraries and Reading (Assessment 6)

Analysis and interpretation of data associated with Libraries and Reading indicates a need for program faculty to address the following areas in the near future:

• Despite 100% of students meeting or exceeding expectations in regard to this assessment, the overall number is small (n=21, cumulative mean of 2.76/3.0). Consideration should be given to adding more data collection points of this assessment area, preferably at a program midpoint, e.g. CIMT 512 (Literature for Young People) and/or CIMT 509 (Selection of Library Materials).
• Reliability of additional assessment instruments should be given consideration as new data collection points are identified and implemented.

Technology (Assessment 7)

Analysis and interpretation of data associated with Technology indicates a need for program faculty to address the following areas in the near future:

• Currently more data needs to be pulled with regard to technology at program midpoint(s) and the practicum. Data in this report reflects only the midpoint of the program (n=28, cumulative mean of 2.64/3.0, 100% of students meeting or exceeding expectations). In response to this need a revised practicum assignment is currently in development and will be implemented as soon as possible.
• In addition to the data currently being collected in CIMT 543 (Production), consideration should be given to the identification of more data collection points in other program courses.

Conclusions

This program review clearly indicates that faculty of the library media program will need to meet as a group on a regular basis to address the areas identified above. In initial meetings faculty should prioritize areas of concern to establish a year-long agenda for affecting the most significant changes toward program improvement. Clearly, multiple readers of assessments and inter-rater reliability of course-specific assessment tools are noted concerns and should perhaps be among the first areas investigated. Addressing inter-rater reliability will likely require a degree of refresher training for all program faculty.

Identification of additional data points throughout the program’s course sequence is another area identified in the data analysis and interpretation. Particular attention should be to given to data points occurring at the program midpoint—currently there may be too much reliance on the practicum portfolio (culminating experience), thus making intervention/correction difficult. Likewise, faculty should be poised to implement the recommendations of the unit assessment team with regard to the collection of meaningful disposition data.

We recognize that data collection has been conducted for a rather limited period; however, taking the actions outlined above can only improve how the data will illuminate program strengths and weaknesses in the future.

SECTION VI - FOR REVISED REPORTS OR RESPONSE TO CONDITIONS REPORTS ONLY

For Revised Reports: Describe what changes or additions have been made to address the standards that were not met in the original submission. Provide new responses to questions and/or new documents to verify the changes described in this section. Specific instructions for preparing a Revised Report are available on the NCATE web site at http://www.ncate.org/Accreditation/ProgramReview/ProgramReportSubmission/RevisedProgramReports/tabid/453/Default.aspx

For Response to Conditions Reports: Describe what changes or additions have been made to address the conditions cited in the original recognition report. Provide new responses to questions and/or new documents to verify the changes described in this section. Specific instructions for preparing a Response to Conditions Report are available on the NCATE web site at http://www.ncate.org/Accreditation/ProgramReview/ProgramReportSubmission/ResponsetoConditionsReport/tabid/454/Default.aspx

(Response limited to 24,000 characters.)

Please click "Next"

This is the end of the report. Please click "Next" to proceed.
Section I. Assessment Standard Matrix

MS in Educational Technology Program uses seven assessments as follows:

Assessment #1: Licensure assessment, or other content-based assessment
Assessment #2: Assessment of content knowledge in instructional or educational communications and technology
Assessment #3: Assessment of candidate ability to plan
Assessment #4: Assessment of student teaching/internship/practicum etc.
Assessment #5: Assessment of candidate effect on student/client learning
Assessment #6: Additional assessment that addresses AECT standards
Assessment #7: Additional assessment that addresses AECT standards

Matrix of alignment of assessments with standards (standards at all levels are listed below the matrix)

<table>
<thead>
<tr>
<th>MS in Educational Technology</th>
<th>640</th>
<th>620</th>
<th>630</th>
<th>793</th>
<th>620</th>
<th>689</th>
<th>543</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Curriculum, Instruction, and Media Technology</td>
<td>#1</td>
<td>#2</td>
<td>#3</td>
<td>#4</td>
<td>#5</td>
<td>#6</td>
<td>#7</td>
</tr>
<tr>
<td>Bayh College of Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section III – Relationship of Assessment to Standards

Standard 1 Design: Candidates demonstrate the knowledge, skills, and dispositions to design conditions for learning by applying principles of instructional systems design, message design, instructional strategies, and learner characteristics.

1.1 Instructional Systems Design	√	√				
1.2 Message Design	√					
1.3 Instructional Strategies	√	√				
1.4 Learner Characteristics			√			

Standard 2 Development: Candidates demonstrate the knowledge, skills, and dispositions to develop instructional materials and experiences using print,
audiovisual, computer-based, and integrated technologies.

<table>
<thead>
<tr>
<th>2.1 Print Technologies</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Audiovisual Technologies</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>2.3 Computer-Based Technologies</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>2.4 Integrated Technologies</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Standard 3 Utilization: Candidates demonstrate the knowledge, skills, and dispositions to use processes and resources for learning by applying principles and theories of media utilization, diffusion, implementation, and policy-making.

<table>
<thead>
<tr>
<th>3.1 Media Utilization</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Diffusion of Innovations</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Implementation and Institutionalization</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Policies and Regulations</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard 4 Management: Candidates demonstrate knowledge, skills, and dispositions to plan, organize, coordinate, and supervise instructional technology by applying principles of project, resource, delivery system, and information management.

<table>
<thead>
<tr>
<th>4.1 Project Management</th>
<th>√</th>
<th>√</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Resource Management</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>4.3 Delivery System Management</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>4.4 Information Management</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Standard 5 Evaluation: Candidates demonstrate knowledge, skills, and dispositions to evaluate the adequacy of instruction and learning by applying principles of problem analysis, criterion-referenced measurement, formative and summative evaluation, and long-range planning.

<table>
<thead>
<tr>
<th>5.1 Problem Analysis</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
<th>√</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Criterion-Referenced Measurement</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>5.3 Formative and Summative Evaluation</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>5.4 Long-Range Planning</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

AECT Standards

Standard 1 Design
1.1 Instructional Systems Design (ISD)
 1.1.a Utilize and implement design principles which specify optimal conditions for learning.
 1.1.b Identify a variety of instructional systems design models and apply at least one model.
 1.1.c Identify learning theories from which each model is derived and the consequent implications.

 1.1.1 Analyzing: process of defining what is to be learned and the context in which it is to be learned.
 1.1.1.a Write appropriate objectives for specific content and outcome levels.
 1.1.1.b Analyze instructional tasks, content, and context.
 1.1.1.c Categorize objectives using an appropriate schema or taxonomy.
 1.1.1.d Compare and contrast curriculum objectives for their area(s) of preparation with federal, state, and/or professional content standards.

 1.1.2 Designing: process of specifying how it is to be learned.
 1.1.2.a Create a plan for a topic of a content area (e.g., a thematic unit, a text chapter, an interdisciplinary unit) to demonstrate application of the principles of macro-level design.
 1.1.2.b Create instructional plans (micro-level design) that address the needs of all learners, including appropriate accommodations for learners with special needs.

 1.1.3 Developing: process of authoring and producing the instructional materials.
 1.1.3.a Produce instructional materials which require the use of multiple media (e.g., computers, video, projection).
 1.1.3.b Demonstrate personal skill development with at least one: computer authoring application, video tool, or electronic communication application.

 1.1.4 Implementing: actually using the materials and strategies in context.
 1.1.4.a Use instructional plans and materials which they have produced in contextualized instructional settings (e.g., practica, field experiences, training) that address the needs of all learners, including appropriate accommodations for learners with special needs.

 1.1.5 Evaluating: process of determining the adequacy of the instruction.
 1.1.5.a Utilize a variety of assessment measures to determine the adequacy of learning and instruction. AECT Program Standards 22 AECT Program Standards
 1.1.5.b Demonstrate the use of formative and summative evaluation within practice and contextualized field experiences.
 1.1.5.c Demonstrate congruency among goals/objectives, instructional strategies, and assessment measures.

1.2 Message Design
 1.2.a Apply principles of educational psychology, communications theory, and visual literacy to the selection of media for macro- and micro-level design of instruction.
1.2.b Apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task.
1.2.c Understand, recognize and apply basic principles of message design in the development of a variety of communications with their learners.

1.3 Instructional Strategies
1.3.a Select instructional strategies appropriate for a variety of learner characteristics and learning situations.
1.3.b Identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences.
1.3.c Analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective.
1.3.d Select motivational strategies appropriate for the target learners, task, and learning situation.

1.4 Learner Characteristics
1.4.a Identify a broad range of observed and hypothetical learner characteristics for their particular area(s) of preparation.
1.4.b Describe and/or document specific learner characteristics which influence the selection of instructional strategies.
1.4.c Describe and/or document specific learner characteristics which influence the implementation of instructional strategies.

Standard 2 Development
2.0.1 Select appropriate media to produce effective learning environments using technology resources.
2.0.2 Use appropriate analog and digital productivity tools to develop instructional and professional products.
2.0.3 Apply instructional design principles to select appropriate technological tools for the development of instructional and professional products.
2.0.4 Apply appropriate learning and psychological theories to the selection of appropriate technological tools and to the development of instructional and professional products.
2.0.5 Apply appropriate evaluation strategies and techniques for assessing effectiveness of instructional and professional products.
2.0.6 Use the results of evaluation methods and techniques to revise and update instructional and professional products.
2.0.7 Contribute to a professional portfolio by developing and selecting a variety of productions for inclusion in the portfolio.

2.1 Print Technologies
2.1.1 Develop instructional and professional products using a variety of technological tools to produce text for communicating information.
2.1.2 Produce print communications (e.g., flyers, posters, brochures, newsletters) combining words and images/graphics using desktop publishing software.
2.1.3 Use presentation application software to produce presentations and supplementary materials for instructional and professional purposes.
2.1.4 Produce instructional and professional products using various aspects of integrated application programs.

2.2 Audiovisual Technologies

2.2.1 Apply principles of visual and media literacy for the development and production of instructional and professional materials and products.

2.2.2 Apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies.

2.2.3 Use appropriate video equipment (e.g., camcorders, video editing) to prepare effective instructional and professional products.

2.2.4 Use a variety of projection devices with appropriate technology tools to facilitate presentations and instruction.

2.3 Computer-Based Technologies

2.3.1 Design and produce audio/video instructional materials which use computer-based technologies.

2.3.2 Design, produce, and use digital information with computer-based technologies.

2.3.3 Use imaging devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials.

2.4 Integrated Technologies

2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products.

2.4.2 Develop and prepare instructional materials and products for various distance education delivery technologies.

2.4.3 Combine electronic and non-electronic media to produce instructional materials, presentations, and products.

2.4.4 Use telecommunications tools such as electronic mail and browsing tools for the World Wide Web to develop instructional and professional products.

2.4.5 Develop effective Web pages with appropriate links using various technological tools (e.g., print technologies, imaging technologies, and video).

2.4.6 Use writable CD-ROMs to record productions using various technological tools.

2.4.7 Use appropriate software for capturing Web pages, audio wave files, and video files for developing off-line presentations.

Standard 3 Utilization

3.1 Media Utilization

3.1.1 Identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process.

3.1.2 Use educational communications and instructional technology (ECIT) resources in a variety of learning contexts.

3.2 Diffusion of Innovations

3.2.1 Identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities.

3.3 Implementation and Institutionalization

3.3.1 Use appropriate instructional materials and strategies in various learning contexts.
3.3.2 Identify and apply techniques for integrating ECIT innovations in various learning contexts.
3.3.3 Identify strategies to maintain use after initial adoption.

3.4 Policies and Regulations
3.4.1 Identify and apply standards for the use of instructional technology.
3.4.2 Identify and apply policies which incorporate professional ethics within practice.
3.4.3 Identify and apply copyright and fair use guidelines within practice.
3.4.4 Identify and implement effective policies related to the utilization, application, and integration of instructional technologies.
3.4.5 Identify policies and regulations which apply to the utilization, application, and integration of distance delivery technologies.

Standard 4 Management
4.0.1 Demonstrate leadership attributes with individuals and groups (e.g., interpersonal skills, group dynamics, team building).
4.1 Project Management
 4.1.1 Apply project management techniques in various learning and training contexts.
4.2 Resource Management
 4.2.1 Apply resource management techniques in various learning and training contexts.
4.3 Delivery System Management
 4.3.1 Apply delivery system management techniques in various learning and training contexts.
4.4 Information Management
 4.4.1 Apply information management techniques in various learning and training contexts.

Standard 5 Evaluation
5.1 Problem Analysis
 5.1.1 Identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (e.g., conduct needs assessments, identify and define problems, identify constraints, identify resources, define learner characteristics, define goals and objectives in instructional systems design, media development and utilization, program management, and evaluation).
5.2 Criterion-Referenced Measurement
 5.2.1 Develop and apply criterion-referenced measures in a variety of ECIT contexts.
5.3 Formative and Summative Evaluation
 5.3.1 Develop and apply formative and summative evaluation strategies in a variety of ECIT contexts.
5.4 Long-Range Planning
 5.4.1 Develop a long-range strategic plan related to any of the domains or subdomains.
Section II Assignments, Rubrics, and students’ Data

Assessment #1. Licensure assessment or other content-based assessment

Project Description:
This project requires students to design and develop a short section of an educational software program or a workshop following the procedure of one of the ID models. Students choose a topic and the target learners. They can use any authoring tool with which they feel comfortable to develop the project. Since CIMT 640 is an introductory course, this project’s requirements are at the fundamental level and the scope of the instruction is small. The instructor provided instructions and emphasized design implications in class when demonstrating workshop and software examples. A 3-hour class time is contributed to the demonstration and discussion of workshop and software design and development. The following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. No matter how small the instruction is, the project needs to include all the elements mentioned above. Students are also required to demonstrate the project in class and discuss design principles based on the specific criteria in the rubric, including diversity concerns in the design as well. Students need to turn in the project along with a paper discussing design principles. The paper should be a single-spaced essay, 3 pages. Use APA style to cite references.

There are six projects, ten online discussions, two examinations, and three reports of off-campus activities for CIMT 640. This project meets the learning objective 7 of the eight objectives for the course. The project meets AECT Standards 1-5 and is graded based on the following rubric.

Rubric:

<table>
<thead>
<tr>
<th>CIMT 640 MS in Ed Tech Assessment</th>
<th>AECT Standard Elements</th>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Instructional Systems Design</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>5 Exemplary</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Candidates demonstrate sufficient ability to</td>
<td>4 Proficient</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Candidates demonstrate some ability to</td>
<td>3 Developing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Candidates demonstrate limited ability to</td>
<td>2 Unsatisfactory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No evidence of understanding instructional systems</td>
<td>1 Not evident</td>
<td>1</td>
</tr>
</tbody>
</table>

Page 7 of 108
<table>
<thead>
<tr>
<th>Score:</th>
<th>write appropriate objectives for specific content and outcome levels (1.1.1.a),</th>
<th>write appropriate objectives for specific content and outcome levels (1.1.1.a),</th>
<th>write appropriate objectives for specific content and outcome levels (1.1.1.a),</th>
<th>write appropriate objectives for specific content and outcome levels (1.1.1.a),</th>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>analyze instructional tasks, content, and context (1.1.1.b),</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>and categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>and categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>and categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>and categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td></td>
</tr>
<tr>
<td>1.2 Message Design</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding message design</td>
</tr>
<tr>
<td></td>
<td>apply principles of educational psychology, communications theory, and visual</td>
<td>apply principles of educational psychology, communications theory, and</td>
<td>apply principles of educational psychology, communications theory, and</td>
<td>apply principles of educational psychology, communications theory, and</td>
<td></td>
</tr>
</tbody>
</table>

¹ For points calculation, please refer to Table 1.2. *Calculation of student performance to meet each standard.* In this column, the instructor will also communicate with the student which area(s) of each standard is/are the weak area(s) for the student to improve.
<table>
<thead>
<tr>
<th>Score:</th>
<th>literacy to the development of instructional messages specific to the learning task (1.2.b).</th>
<th>visual literacy to the development of instructional messages specific to the learning task (1.2.b).</th>
<th>visual literacy to the development of instructional messages specific to the learning task (1.2.b).</th>
<th>visual literacy to the development of instructional messages specific to the learning task (1.2.b).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>and understand, recognize, and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize, and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize, and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize, and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
</tr>
<tr>
<td>1.3 Instructional Strategies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>Score:</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations</td>
</tr>
<tr>
<td>Score:</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4 Learner Characteristics</th>
<th>Candidates demonstrated comprehensive ability to describe and/or document specific learner characteristics which influence</th>
<th>Candidates demonstrated sufficient ability to describe and/or document specific learner characteristics which influence</th>
<th>Candidates demonstrated some ability to describe and/or document specific learner characteristics which influence</th>
<th>Candidates demonstrated limited ability to describe and/or document specific learner characteristics which influence</th>
<th>No evidence of understanding learner characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score:</th>
<th>the selection of instructional strategies (1.4.b).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
</tr>
<tr>
<td>2.1 Print Technologies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>No evidence of understanding print technologies</td>
</tr>
<tr>
<td></td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>Development</td>
</tr>
<tr>
<td>Score:</td>
<td>use presentation application</td>
<td>use presentation application</td>
<td>use presentation application</td>
<td>1/5</td>
</tr>
</tbody>
</table>
2.1.3 Software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3)

and produce instructional and professional products using various aspects of integrated application programs (2.1.4).

2.2 Audiovisual Technologies

<table>
<thead>
<tr>
<th>Score:</th>
<th>Candidates demonstrated comprehensive ability to</th>
<th>Candidates demonstrated sufficient ability to</th>
<th>Candidates demonstrated some ability to</th>
<th>Candidates demonstrated limited ability to</th>
<th>No evidence of understanding audiovisual technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply principles of visual and media literacy for the</td>
<td>apply principles of visual and media literacy for</td>
<td>apply principles of visual and media literacy</td>
<td>apply principles of visual and media literacy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>development and production of instructional and</td>
<td>the development and production of instructional and</td>
<td>the development and production of instructional and</td>
<td>the development and production of instructional and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional materials and</td>
<td>professional</td>
<td>professional</td>
<td>professional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Score:</td>
<td>Score:</td>
<td>Score:</td>
<td>Score:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>products (2.2.1).</td>
<td>materials and products (2.2.1).</td>
<td>materials and products (2.2.1).</td>
<td>materials and products (2.2.1).</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>2.3 Computer-Based Technologies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2).</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2).</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2).</td>
<td>No evidence of understanding computer-based technologies</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Media Utilization</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>No evidence of understanding media utilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1).</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1).</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1).</td>
<td>Utilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/5</td>
<td></td>
</tr>
<tr>
<td>3.4 Policies and Regulations</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding policies and regulations</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td></td>
</tr>
<tr>
<td>4.2 Resource Management</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding resource management</td>
</tr>
<tr>
<td>Score:</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td></td>
</tr>
<tr>
<td>4.3 Delivery System</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>No evidence of</td>
</tr>
</tbody>
</table>

Page 14 of 108
<table>
<thead>
<tr>
<th>Management</th>
<th>comprehensive ability to</th>
<th>sufficient ability to</th>
<th>some ability to</th>
<th>limited ability to</th>
<th>understanding delivery system management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td></td>
</tr>
</tbody>
</table>

Score:

<table>
<thead>
<tr>
<th>5.2 Criterion-Referenced Measurement</th>
<th>Candidates demonstrated comprehensive ability to</th>
<th>Candidates demonstrated sufficient ability to</th>
<th>Candidates demonstrated some ability to</th>
<th>Candidates demonstrated limited ability to</th>
<th>No evidence of understanding criterion-referenced measurement</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>No evidence of understanding criterion-referenced measurement</td>
<td>/5</td>
</tr>
</tbody>
</table>

Score:

| Overall Comments²: | develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1). | develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1). | develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1). | develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1). | develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1). | /5 |

Total Points³

Table 1.1. Standards to meet

<table>
<thead>
<tr>
<th>AECT Standards for</th>
<th>Performances related to the Standards</th>
</tr>
</thead>
</table>

² The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.

³ Total points that the student gets of Design + Development+ Utilization + Management + Evaluation; Total possible is 25 points.
Table 1.2. Calculation of student performance to meet each standard

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>Design Score = sum of (1.1.1,a + 1.1.1.b + 1.1.1.c + 1.2.b + 1.2.c + 1.3.a + 1.3.c + 1.3.d + 1.4.b + 1.4.c)/10</td>
<td>Design Score = (5+5+5+5+5+5+5+5+5+5)/10 = 5</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>Development Score = sum of (2.1.1 + 2.1.3 + 2.1.4 + 2.2.1 +2.3.2)/5</td>
<td>Development Score = (5+5+5+5+5)/5 = 5</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.1 + 3.4.2 + 3.4.3)/3</td>
<td>Utilization Score = (5+5+5)/3 = 5</td>
</tr>
<tr>
<td>Standard 4 Management</td>
<td>Management Score = sum of (4.2.1 + 4.3.1)/2</td>
<td>Management Score = (5+5)/2 = 5</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1)/2</td>
<td>Evaluation Score = (5+5)/2 = 5</td>
</tr>
</tbody>
</table>

Data:

Spring 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 2</td>
<td>5</td>
<td>5</td>
<td>4.33</td>
<td>4.50</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Discussion:
This course is at the introductory level. According to the requirements for this course, all candidates demonstrated competency in each of the standards included with this assessment. Candidates’ projects as well as presentations and discussions on the projects provided evidence of congruency and soundness in the pedagogy and delivery of instruction.

Spring 2014

<table>
<thead>
<tr>
<th>Student</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 2</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 3</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 4</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 5</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 6</td>
<td>3.6</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.18</td>
</tr>
<tr>
<td>Student 7</td>
<td>3.6</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.18</td>
</tr>
<tr>
<td>Student 8</td>
<td>3.6</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.18</td>
</tr>
<tr>
<td>Student 9</td>
<td>3.6</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.18</td>
</tr>
<tr>
<td>Student 10</td>
<td>3.6</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.18</td>
</tr>
<tr>
<td>Student 11</td>
<td>4.1</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.28</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Student 12</td>
<td>4.1</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.28</td>
</tr>
<tr>
<td>Student 13</td>
<td>4.1</td>
<td>5.0</td>
<td>4.3</td>
<td>5.0</td>
<td>3.0</td>
<td>4.28</td>
</tr>
<tr>
<td>Standard Average</td>
<td>3.7</td>
<td>5.0</td>
<td>4.2</td>
<td>5.0</td>
<td>3.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Discussion: The culminating project of CIMT 640’s (Survey of Educational Media) culminating required groups of students to create a video focusing on various writing strategies, techniques, and resources relevant to international graduate students at Indiana State University. In the final assessment, the outcomes revealed some overall strengths and continuing challenges.

To start, students mastered Standards 2 and 4, with average scores of 5. The medium and support provided throughout the process ensured students’ success in “develop[ing] instructional materials and experiences” with such technologies. They were also able to effectively manage their groups through regular collaborative meetings, many of which also involved the instructor, who worked individually with groups to help resolve conflicts. Students developed leadership skills in the process and found technologies to assist them in the design and development processes.

Groups also performed fairly well with Standard 3. Although more support was needed, they earned an overall average of 4.2 in this standard. They were not always successful in articulating their design choices and ethical practices, but with time they were able to address most of the major concerns.

Students struggled the most with Standards 1 and 5, earning an average of 3.7 and 3 respectively. For Standard 1, while students performed fairly well with regard to writing objective (1.1.1.a), message design (1.2.c), instructional strategies (1.3.a), and motivational strategies (1.3.d), earning an average of 4-5 in each of those benchmarks, they did not do as well with task and context analysis (1.1.1.b), categorizing objectives (1.1.1.c), applying theory (1.2.b), analysis of instructional strategies (1.3.c), and learner influence on the selection and implementation of strategies (1.4.b and 1.4.c), earning an average of 2.7-3.7 in those categories. The dichotomous performance may be a result of the group’s initial focus on the actual product rather than the report of their design. Many did appear to apply instructional theories to their creations, but their limited explanations did not often indicate their knowledge in this area. Writing objectives and the visual and instructional appeal of the videos was greatly emphasized during the course, and while they instructional message and application of theory was a part of those conversations, students were not required to write out their justifications until the end of the project, at which time they may not have had time to elaborate or they may have forgotten some of their applied strategies.

Regarding Standard 5, given the limited timeframe of the semester and the delivery format, criterion-referenced evaluation was not emphasized in the course. While it was recommended and conversations occurred regarding its implementation, students were unsure how to incorporate it when they did not have control of the final platform in which it would be delivered (since it was to be delivered to and ultimately used by the client).
Assessment #2: Assessment of content knowledge in instructional or educational communications and technology

Assessment #2 is for CIMT 620 Instructional Design.

Project Description:
Assessment #2 provides evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional systems design (ISD) model based on Smith and Ragan (2005) and Dick and Carey (2009). Evidence is produced via individual project work from each candidate who successfully completes CIMT 620. CIMT 620 is a foundation level course in ISD that is required by all candidates enrolled in the Master of Educational Technology Program. Learning outcomes are assessed for each of the five standards (i.e., design, development, utilization, management, and evaluation), which are required for initial programs in the area of ECIT. The terminal project for CIMT 620 demonstrates candidate competencies through multiple iterations of the instructional design lifecycle process, using the ISD models referenced above. This project is broken into six parts over the course of the semester which include: learning context analysis, learner analysis, learner task and prerequisite analysis, learning objectives and assessment tools, instructional strategy design, and instructional material development. Completion of each part provides the candidate with applied practice of the ISD principles through multiple iterations, contributing to mastery of content knowledge. Interactive feedback is provided by the instructor and through peer review, thus providing multiple reinforcement opportunities for each of the performance standards identified in this rubric. The terminal project requires candidates to revise and integrate the parts, using incremental feedback through a defined formative evaluation process, into a complete unit of instruction, demonstrating synthesis of the ISD concepts that are specified by the standard.

Rubric:

<table>
<thead>
<tr>
<th>CIMT 620 MS in Ed Tech Assessment AECT Standard Elements</th>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Instructional Systems Design</td>
<td>5 Exemplary</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 Proficient</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 Developing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 Unsatisfactory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1 Not Evident</td>
<td></td>
</tr>
<tr>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
</tr>
<tr>
<td></td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding instructional systems design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design</td>
</tr>
</tbody>
</table>

Page 19 of 108
utilize and implement design principles which specify optimal conditions for learning (1.1.a),
utilize and implement design principles which specify optimal conditions for learning (1.1.a),
utilize and implement design principles which specify optimal conditions for learning (1.1.a),
utilize and implement design principles which specify optimal conditions for learning (1.1.a),

identify a variety of instructional systems design models and apply at least one model (1.1.b),
identify a variety of instructional systems design models and apply at least one model (1.1.b),
identify a variety of instructional systems design models and apply at least one model (1.1.b),
identify a variety of instructional systems design models and apply at least one model (1.1.b),

identify learning theories from which each model is derived and the consequent implications (1.1.c),
identify learning theories from which each model is derived and the consequent implications (1.1.c),
identify learning theories from which each model is derived and the consequent implications (1.1.c),
identify learning theories from which each model is derived and the consequent implications (1.1.c),

write appropriate objectives for specific content and outcome levels (1.1.1.a),
write appropriate objectives for specific content and outcome levels (1.1.1.a),
write appropriate objectives for specific content and outcome levels (1.1.1.a),
write appropriate objectives for specific content and outcome levels (1.1.1.a),

For points calculation, please refer to Table 2.2. Calculation of student performance to meet each standard. In this column, the instructor will also communicate with the student which area(s) of each standard is/are the weak area(s) for the student to improve.
<table>
<thead>
<tr>
<th>Score:</th>
<th>analyze instructional tasks, content, and context (1.1.1.b),</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c),</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c),</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c),</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c),</td>
</tr>
<tr>
<td>Score:</td>
<td>create a plan for a topic of a content area (e.g., a thematic unit, a text chapter, an inter-disciplinary unit) to demonstrate application of the principles of macro-level design (1.1.2.a),</td>
<td>create a plan for a topic of a content area (e.g., a thematic unit, a text chapter, an inter-disciplinary unit) to demonstrate application of the principles of macro-level design (1.1.2.a),</td>
<td>create a plan for a topic of a content area (e.g., a thematic unit, a text chapter, an inter-disciplinary unit) to demonstrate application of the principles of macro-level design (1.1.2.a),</td>
<td>create a plan for a topic of a content area (e.g., a thematic unit, a text chapter, an inter-disciplinary unit) to demonstrate application of the principles of macro-level design (1.1.2.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>create instructional plans (micro-level design) that address the needs of all learners, including</td>
<td>create instructional plans (micro-level design) that address the needs of all learners, including</td>
<td>create instructional plans (micro-level design) that address the needs of all learners, including</td>
<td>create instructional plans (micro-level design) that address the needs of all learners, including</td>
</tr>
<tr>
<td>Score:</td>
<td>appropriate accommodations for learners with special needs (1.1.2.b),</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>utilize a variety of assessment measures to determine the adequacy of learning and instruction (1.1.5.a),</td>
<td>utilize a variety of assessment measures to determine the adequacy of learning and instruction (1.1.5.a),</td>
<td>utilize a variety of assessment measures to determine the adequacy of learning and instruction (1.1.5.a),</td>
<td>utilize a variety of assessment measures to determine the adequacy of learning and instruction (1.1.5.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>demonstrate the use of formative and summative evaluation within practice and contextualized field experiences (1.1.5.b),</td>
<td>demonstrate the use of formative and summative evaluation within practice and contextualized field experiences (1.1.5.b),</td>
<td>demonstrate the use of formative and summative evaluation within practice and contextualized field experiences (1.1.5.b),</td>
<td>demonstrate the use of formative and summative evaluation within practice and contextualized field experiences (1.1.5.b),</td>
</tr>
<tr>
<td>Score:</td>
<td>and demonstrate congruency among goals, objectives, instructional strategies, and assessment measures (1.1.5.c.),</td>
<td>and demonstrate congruency among goals, objectives, instructional strategies, and assessment measures (1.1.5.c.),</td>
<td>and demonstrate congruency among goals, objectives, instructional strategies, and assessment measures (1.1.5.c.),</td>
<td>and demonstrate congruency among goals, objectives, instructional strategies, and assessment measures (1.1.5.c.),</td>
</tr>
<tr>
<td>1.3 Instructional Strategies</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
</tr>
<tr>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
</tr>
<tr>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the</td>
</tr>
<tr>
<td>Score:</td>
<td>specific content, and type of learner objective (1.3.c),</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td></td>
</tr>
<tr>
<td>1.4 Learner Characteristics</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
</tr>
<tr>
<td>No evidence of understanding learner characteristics</td>
<td>identify a broad range of observed and hypothetical learner characteristics for their particular area(s) of preparation (1.4.a),</td>
<td>identify a broad range of observed and hypothetical learner characteristics for their particular area(s) of preparation (1.4.a),</td>
<td>identify a broad range of observed and hypothetical learner characteristics for their particular area(s) of preparation (1.4.a),</td>
<td></td>
</tr>
<tr>
<td>describe and/or document specific learner characteristics which influence</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>the selection of instructional strategies (1.4.b),</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
</tr>
<tr>
<td>2.1 Print Technologies</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
</tr>
<tr>
<td></td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for communicating information (2.1.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3), software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3), software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3), software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3),</td>
<td>and produce instructional and professional products using various aspects of integrated application programs (2.1.4). and produce instructional and professional products using various aspects of integrated application programs (2.1.4). and produce instructional and professional products using various aspects of integrated application programs (2.1.4). and produce instructional and professional products using various aspects of integrated application programs (2.1.4).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Media Utilization</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
</tr>
<tr>
<td></td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional</td>
<td>No evidence of understanding media utilization</td>
</tr>
</tbody>
</table>

<p>| Score: | 3/5 |
| Score: | design process (3.1.1), and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2). | design process (3.1.1), and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2). | design process (3.1.1), and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2). | design process (3.1.1), and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2). | |
| 4.1 Project Management | Candidates demonstrate comprehensive ability to apply project management techniques in various learning and training contexts (4.1.1). | Candidates demonstrate sufficient ability to apply project management techniques in various learning and training contexts (4.1.1). | Candidates demonstrate some ability to apply project management techniques in various learning and training contexts (4.1.1). | Candidates demonstrate limited ability to apply project management techniques in various learning and training contexts (4.1.1). | No evidence of understanding project management |
| Score: | apply project management techniques in various learning and training contexts (4.1.1). | apply project management techniques in various learning and training contexts (4.1.1). | apply project management techniques in various learning and training contexts (4.1.1). | apply project management techniques in various learning and training contexts (4.1.1). | |
| 4.2 Resource Management | Candidates demonstrate comprehensive ability to apply resource management techniques in various learning and training | Candidates demonstrate sufficient ability to apply resource management techniques in various learning and training | Candidates demonstrate some ability to apply resource management techniques in various learning and training | Candidates demonstrate limited ability to apply resource management techniques in various learning and training | No evidence of understanding resource management |
| Score: | apply resource management techniques in various learning and training | apply resource management techniques in various learning and training | apply resource management techniques in various learning and training | apply resource management techniques in various learning and training | |</p>
<table>
<thead>
<tr>
<th>4.3 Delivery System Management</th>
<th>Candidates demonstrate comprehensive ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</th>
<th>Candidates demonstrate sufficient ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</th>
<th>Candidates demonstrate some ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</th>
<th>Candidates demonstrate limited ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</th>
<th>No evidence of understanding delivery system management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>5.1 Problem Analysis</td>
<td>Candidates demonstrate comprehensive ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrate sufficient ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrate some ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>No evidence of understanding problem analysis</td>
</tr>
<tr>
<td>Score:</td>
<td>5.2 Criterion-Referenced Measurement</td>
<td>Candidates demonstrate comprehensive ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrate sufficient ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrate some ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>No evidence of understanding criterion-</td>
</tr>
</tbody>
</table>
develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).

Overall Comments\(^5\):

<table>
<thead>
<tr>
<th>Score:</th>
<th>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</th>
<th>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</th>
<th>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</th>
<th>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</th>
<th>Total Points(^6) /25</th>
</tr>
</thead>
</table>

Table 2.1. Standards to meet

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Performances related to the Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>1.1.a, 1.1.b, 1.1.c, 1.1.1.a, 1.1.1.b, 1.1.1.c, 1.1.2.a, 1.1.2.b, 1.1.5.a, 1.1.5b, 1.1.5.c, 1.3.a, 1.3.b, 1.3.c, 1.3.d, 1.4.a, 1.4.b, 1.4.c</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>2.1.1, 2.1.3, 2.1.4</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>3.1.1, 3.1.2</td>
</tr>
<tr>
<td>Standard 4 Management</td>
<td>4.1.1, 4.2.1, 4.3.1</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>5.1.1, 5.2.1, 5.3.1</td>
</tr>
</tbody>
</table>

Table 2.2. Calculation of student performance to meet each standard:

\(^5\) The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.

\(^6\) Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>Design Score = sum of (1.1.a + 1.1.b + 1.1.c + 1.1.1.a + 1.1.1.b + 1.1.1.c + 1.1.2.a + 1.1.2b + 1.1.5.a + 1.1.5.b + 1.1.5.c + 1.3.a + 1.3.b + 1.3.c + 1.3.d + 1.4.a + 1.4.b + 1.4.c)/18</td>
<td>Design Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/18 = 5</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>Development Score = sum of (2.1.1 + 2.1.3 + 2.1.4)/3</td>
<td>Development Score = (5+5+5)/3 = 5</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.1 + 3.1.)/2</td>
<td>Utilization Score = (5+5)/2 = 5</td>
</tr>
<tr>
<td>Standard 4 Management</td>
<td>Management Score = sum of (4.1.1 + 4.2.1 + 4.3.1)/3</td>
<td>Management Score = (5+5+5)/3 = 5</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1 + 5.3.1)/3</td>
<td>Evaluation Score = (5+5+5)/3 = 5</td>
</tr>
</tbody>
</table>

Data

Spring 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.7</td>
<td>5.0</td>
<td>5</td>
<td>4.7</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.3</td>
<td>4.7</td>
<td>3.5</td>
<td>5.0</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 3</td>
<td>4.9</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.5</td>
<td>4.7</td>
<td>4</td>
<td>3.7</td>
<td>5</td>
<td>4.4</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.7</td>
<td>5.0</td>
<td>4.5</td>
<td>4.7</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.8</td>
<td>4.3</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.7</td>
<td>4.3</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Discussion:
Candidates have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners.

Summer 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.7</td>
<td>5.0</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.8</td>
<td>4.7</td>
<td>3.5</td>
<td>5.0</td>
<td>5</td>
<td>4.6</td>
</tr>
<tr>
<td>Student 3</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.5</td>
<td>4.7</td>
<td>4</td>
<td>3.7</td>
<td>5</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Page 31 of 108
<table>
<thead>
<tr>
<th>Student</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 5</td>
<td>4.0</td>
<td>4.0</td>
<td>4</td>
<td>3.3</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.6</td>
<td>4.3</td>
<td>4</td>
<td>4.3</td>
<td>5</td>
<td>4.4</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.9</td>
<td>4.7</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 8</td>
<td>4.6</td>
<td>4.7</td>
<td>4.5</td>
<td>4.7</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>Student 9</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 10</td>
<td>4.2</td>
<td>4.0</td>
<td>4</td>
<td>4.0</td>
<td>5</td>
<td>4.2</td>
</tr>
<tr>
<td>Student Average</td>
<td>4.62</td>
<td>4.6</td>
<td>4.4</td>
<td>4.43</td>
<td>4.85</td>
<td>4.58</td>
</tr>
</tbody>
</table>

Discussion: Candidates have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners.

Fall 2013

<table>
<thead>
<tr>
<th>Section 401</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.9</td>
<td>5.0</td>
<td>5.0</td>
<td>4.7</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 2</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 3</td>
<td>3.6</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.2</td>
<td>4.7</td>
<td>4.0</td>
<td>3.7</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Student</td>
<td>Standard 1</td>
<td>Standard 2</td>
<td>Standard 3</td>
<td>Standard 4</td>
<td>Standard 5</td>
<td>Individual Student Average</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.7</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.9</td>
<td>4.3</td>
<td>4.0</td>
<td>4.3</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.6</td>
<td>4.3</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 8</td>
<td>4.8</td>
<td>4.7</td>
<td>5.0</td>
<td>4.7</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 9</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 10</td>
<td>3.7</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Student 11</td>
<td>4.7</td>
<td>4.7</td>
<td>4.0</td>
<td>5.0</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 12</td>
<td>4.9</td>
<td>5.0</td>
<td>5.0</td>
<td>4.7</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 13</td>
<td>3.7</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Student 14</td>
<td>3.1</td>
<td>4.0</td>
<td>3.0</td>
<td>3.7</td>
<td>4.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Student 15</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 16</td>
<td>4.1</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Student 17</td>
<td>3.8</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 18</td>
<td>4.8</td>
<td>4.7</td>
<td>5.0</td>
<td>4.7</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 19</td>
<td>4.8</td>
<td>4.7</td>
<td>5.0</td>
<td>4.7</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Student Average</td>
<td>4.41</td>
<td>4.53</td>
<td>4.47</td>
<td>4.51</td>
<td>4.61</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Discussion: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course.
Student 1	4.7	5.0	5.0	4.3	5.0	4.8
Student 2	4.8	4.7	3.5	5.0	5.0	4.6
Student 3	5.0	5.0	5.0	5.0	5.0	5.0
Student 4	4.5	4.7	4.0	3.7	5.0	4.4
Student 5	4.0	4.0	4.0	3.3	3.5	3.8
Student 6	4.6	4.3	4.0	4.3	5.0	4.4
Student 7	4.9	4.7	5.0	5.0	5.0	4.9
Student Average	**4.63**	**4.62**	**4.36**	**4.38**	**4.79**	**4.55**

Discussion: Candidates demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Slightly lower aggregate scores for performance criteria were noted for individual candidates in Standards 3 (Utilization) and 4 (Management). These were addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, respectively. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners.

Spring 2014

<table>
<thead>
<tr>
<th>Student 1</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.6</td>
<td>3.7</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.7</td>
<td>4.3</td>
<td>3.5</td>
<td>5.0</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 3</td>
<td>4.3</td>
<td>4.0</td>
<td>4</td>
<td>4.3</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Student 4</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.9</td>
<td>4.3</td>
<td>5</td>
<td>4.7</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student</td>
<td>Standard 1 Design</td>
<td>Standard 2 Development</td>
<td>Standard 3 Utilization</td>
<td>Standard 4 Management</td>
<td>Standard 5 Evaluation</td>
<td>Individual Student Average</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Student 6</td>
<td>3.7</td>
<td>3.7</td>
<td>3</td>
<td>3.0</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.5</td>
<td>4.7</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>Student 8</td>
<td>4.6</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td>Student 9</td>
<td>4.2</td>
<td>4.0</td>
<td>4</td>
<td>4.0</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Student 10</td>
<td>4.2</td>
<td>4.0</td>
<td>4</td>
<td>4.0</td>
<td>5</td>
<td>4.2</td>
</tr>
<tr>
<td>Student 11</td>
<td>4.6</td>
<td>3.7</td>
<td>5</td>
<td>4.3</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Student 12</td>
<td>4.9</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 13</td>
<td>4.8</td>
<td>4.3</td>
<td>5</td>
<td>4.7</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 14</td>
<td>4.3</td>
<td>4.0</td>
<td>5</td>
<td>4.3</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Student Average</td>
<td>4.52</td>
<td>4.19</td>
<td>4.43</td>
<td>4.45</td>
<td>4.57</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Discussion: Candidates have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners.

Summer 2014

<table>
<thead>
<tr>
<th>Student</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.8</td>
<td>5.0</td>
<td>3.5</td>
<td>5.0</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>Student 3</td>
<td>4.6</td>
<td>5.0</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student</td>
<td>1.7</td>
<td>1.7</td>
<td>2</td>
<td>2.0</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.7</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.8</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 7</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 8</td>
<td>5.0</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 9</td>
<td>4.8</td>
<td>5.0</td>
<td>5</td>
<td>4.7</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>Student 10</td>
<td>4.2</td>
<td>4.3</td>
<td>4</td>
<td>4.0</td>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>Student 11</td>
<td>4.6</td>
<td>5.0</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 12</td>
<td>4.7</td>
<td>5.0</td>
<td>5</td>
<td>5.0</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Student 13</td>
<td>4.3</td>
<td>4.3</td>
<td>4</td>
<td>4.0</td>
<td>5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Student Average

| 4.47 | 4.64 | 4.5 | 4.49 | 4.65 | 4.55 |

Discussion: Candidates have consistently demonstrated competency in each of the standards included with this assessment. This suggests congruency and soundness in the pedagogy, based on experiential learning, and also in the teaching methods and content employed in this course. Individual performance gaps have been addressed in feedback sessions and remediation to place additional emphasis on learner analysis and instructional strategy skills development, and resource management, as needed. Consistently high scores reported for all candidates for Standard 5 (Evaluation) are attributable to a rigorous formative evaluation process that includes: a.) expert review; b.) one-on-one learner review of draft assessments and learning activities, and; c.) small group pilot review of all instructional materials with 5-10 try-out learners. Student 4 consistently struggled with putting concepts into practice and with peer interaction requirements for the project deliverables counted in this assessment. Remediation in the form of instructor feedback and one-on-one sessions ultimately allowed the student to meet the minimal requirements defined by the standards for this course.

Assessment #3: Assessment of candidate ability to plan CIMT630

Project Description

Instructions for Diffusion of Innovation Case Study

Page 36 of 108
CIMT 630 is a required course by all candidates enrolled in the Educational Technology Program. Learning outcomes are assessed using standards 3 (utilization), "Utilization is the act of using processes and resources for learning" (Seels & Richey, 1994, p. 46). The case study project for CIMT 630 demonstrated candidate competencies through a three steps review process (peer feedback, peer collaboration, and final revision). This assignment was divided into six parts over the course of the semester which included: 1) Identify the target learning population, 2) Identify the learning technology and it utilization, 3) describe the attributes of diffusion of innovation, 4) describe the communication channels and its diffusion plan, 5) describe three dimensions of the innovation-decision process, and 6) including references that must be cited from books and peer reviewed articles and follow APA format.

Candidates working in a group, and will complete a case study and a presentation to the class. Candidate’s written case study and presentation need to include the following elements:

- Identify the target learning population and describe why this population was selected. Include a discussion of the social system and diversity of learners.
- Identify the learning technology and describe why it is an innovation to this particular population. Also be sure to describe why you consider it to be a learning technology. Practice multimodality of learning by utilizing a wide variety of learning application.
- Describe the attributes of the innovation
 - Relative advantage
 - Compatibility
 - Complexity
 - Trialability
 - Observability
 - Adaptability

- Identify and describe the communication channels that your diffusion plan will utilize.
- Describe the anticipated time dimension in terms of the three dimensions of the innovation-decision process, innovativeness and adopter categories, and rate of adoption.
- References must be cited from books and peer reviewed articles. Authors must be cited within the context of the presentation and also at the end of the document in the reference section.

The case study must be written clearly. It is recommended that headings are used to delineate the different sections and information. Spelling and grammar should be professional and should follow all forms of academic integrity. There is no required page length; rather, the length is dictated by the ability of the group to fully meet all of the expectations above.
Groups should plan on a 15 minute presentation. At least 2 members of the group must participate. The presentation should use appropriate presentation technology, cover as much of the case study as allowable during the allotted time, and prepare for 3-5 minutes of questions at the end.

Rubric: Assessment #3

<table>
<thead>
<tr>
<th>CIMT 630 MS in Ed Tech Assessment AECT Standard Elements</th>
<th>Criteria</th>
<th>5 Exemplary</th>
<th>4 Proficient</th>
<th>3 Developing</th>
<th>2 Unsatisfactory</th>
<th>1 Not evident</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Media Utilization</td>
<td>Candidates demonstrated complete ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated average ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding media utilization</td>
<td>Utilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td></td>
<td>/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>implement a variety of relevant information and ideas to effectively</td>
<td>implement a variety of relevant information and ideas to</td>
<td>implement a variety of relevant information and ideas to</td>
<td>implement a variety of relevant information and ideas to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>collaborate with students, parents, and peers through digital-media formats.</td>
<td>ideas to effectively collaborate with students, parents, and peers through digital-media formats.</td>
<td>effectively collaborate with students, parents, and peers through digital-media formats.</td>
<td>effectively collaborate with students, parents, and peers through digital-media formats.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Diffusion of Innovations</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>customize and personalize learning activities to address students' diverse learning styles by utilizing digital tools and resources to promote meaningful learning and creativity.</td>
<td>customize and personalize learning activities to address students' diverse learning styles by utilizing digital tools and resources to promote meaningful learning and creativity.</td>
<td>customize and personalize learning activities to address students' diverse learning styles by utilizing digital tools and resources to promote meaningful learning and creativity.</td>
<td>customize and personalize learning activities to address students' diverse learning styles by utilizing digital tools and resources to promote meaningful learning and creativity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates demonstrate</td>
<td>complete ability to</td>
<td>sufficient ability to</td>
<td>average ability to</td>
<td>limited ability to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>candidates demonstrate</td>
<td>complete ability</td>
<td>sufficient ability</td>
<td>average ability</td>
<td>limited ability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>No evidence of understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge, acquire awareness about innovation through behavior that candidates initiated and participated in knowledge construction.</td>
<td>Knowledge, acquire awareness about innovation through behavior that candidates initiated and participated in knowledge construction.</td>
<td>Knowledge, acquire awareness about innovation through behavior that candidates initiated and participated in knowledge construction.</td>
<td>Knowledge, acquire awareness about innovation through behavior that candidates initiated and participated in knowledge construction.</td>
<td>Knowledge, acquire awareness about innovation through behavior that candidates initiated and participated in knowledge construction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persuasion, candidates develop favorable and unfavorable attitude toward an innovation and are able to apply it to their work situation</td>
<td>Persuasion, candidates develop favorable and unfavorable attitude toward an innovation and are able to apply it to their work situation</td>
<td>Persuasion, candidates develop favorable and unfavorable attitude toward an innovation and are able to apply it to their work situation</td>
<td>Persuasion, candidates develop favorable and unfavorable attitude toward an innovation and are able to apply it to their work situation</td>
<td>Persuasion, candidates develop favorable and unfavorable attitude toward an innovation and are able to apply it to their work situation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision, candidates are able</td>
<td>Decision, candidates are</td>
<td>Decision, candidates are</td>
<td>Decision, candidates are</td>
<td>Decision, candidates are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to adapt or reject an innovation decision process.</td>
<td>able to adapt or reject an innovation decision process.</td>
<td>able to adapt or reject an innovation decision process.</td>
<td>able to adapt or reject an innovation decision process.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation</td>
<td>to reinforce the innovation decision or reject based on the conflicting results.</td>
<td>Confirmation, reinforce the innovation decision or reject based on the conflicting results.</td>
<td>Confirmation, reinforce the innovation decision or reject based on the conflicting results.</td>
<td>Confirmation, reinforce the innovation decision or reject based on the conflicting results.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Implementation and Institutionalization

<table>
<thead>
<tr>
<th>Candidates demonstrate</th>
<th>complete ability to</th>
<th>sufficient ability to</th>
<th>average ability to</th>
<th>limited ability to</th>
</tr>
</thead>
<tbody>
<tr>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td></td>
</tr>
</tbody>
</table>

Score:
- Implement the innovation into practice engage in activities, content and process, that leads to adoption
- Implement the innovation into practice engage in activities, content and process, that leads to adoption
- Implement the innovation into practice engage in activities, content and process, that leads to adoption
- Implement the innovation into practice engage in activities, content and process, that leads to adoption
- Identify and apply
- Identify and apply
- Identify and apply
- Identify and apply

No evidence of understanding implementation and institutionalization
<table>
<thead>
<tr>
<th>Score:</th>
<th>techniques for integrating ECIT innovations in various learning contexts (3.3.2).</th>
<th>apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</th>
<th>techniques for integrating ECIT innovations in various learning contexts (3.3.2).</th>
<th>techniques for integrating ECIT innovations in various learning contexts (3.3.2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>identify strategies to maintain use after initial adoption (3.3.3).</td>
</tr>
<tr>
<td>3.4 Policies and Regulations</td>
<td>Candidates demonstrate complete ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate average ability to</td>
<td>Candidates demonstrate limited ability to</td>
</tr>
<tr>
<td></td>
<td>deliver new ideas and actions through a wide variety of communication channels for decision making and implementation of adoption.</td>
<td>deliver new ideas and actions through a wide variety of communication channels for decision making and implementation of adoption.</td>
<td>deliver new ideas and actions through a wide variety of communication channels for decision making and implementation of adoption.</td>
<td>No evidence of understanding policies and regulations</td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
</tr>
<tr>
<td>Practice (3.4.2).</td>
<td>Practice (3.4.2).</td>
<td>Practice (3.4.2).</td>
<td>Practice (3.4.2).</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>address the diverse needs of all candidates through learner-centered strategies which provide equitable access to appropriate digital tools and resources.</td>
<td>address the diverse needs of all candidates through learner-centered strategies which provide equitable access to appropriate digital tools and resources.</td>
<td>address the diverse needs of all candidates through learner-centered strategies which provide equitable access to appropriate digital tools and resources.</td>
<td>address the diverse needs of all candidates through learner-centered strategies which provide equitable access to appropriate digital tools and resources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement the ethical use of information from a variety of sources and media.</td>
<td>Implement the ethical use of information from a variety of sources and media.</td>
<td>Implement the ethical use of information from a variety of sources and media.</td>
<td>Implement the ethical use of information from a variety of sources and media.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Comments:</td>
<td>Total Points: 8/25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Description: Candidates will work in small group to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.
8 Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
Describe the systematic process of instructional design (ID) models.
Describe and employ a variety of different theories of learning and instruction that have influenced ID practices.
Analyze instructional strategies for different types of learning and apply the strategies to instruction.
Evaluate each of your team members’ work using the given criteria.
Critique peers’ projects against instructional design principles.

Table 3.1. Standards to meet

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Utilization Standard</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 3 Utilization</td>
<td>3.1.1, 3.1.2, 3.2.1, 3.3.1, 3.3.2, 3.3.3, 3.4.2, 3.4.3</td>
<td>Utilization Score = sum of (3.1.1 + 3.1.2 + 3.2.1 + 3.3.1 + 3.3.2 + 3.3.3 + 3.4.2 + 3.4.3)/8</td>
<td>Utilization Score = (5+5+5+5+5+5+5+5)/8 = 5</td>
</tr>
</tbody>
</table>

Table 3.2. Calculation of student performance to meet each standard:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.1 + 3.1.2 + 3.2.1 + 3.3.1 + 3.3.2 + 3.3.3 + 3.4.2 + 3.4.3)/8</td>
<td>Utilization Score = (5+5+5+5+5+5+5+5)/8 = 5</td>
</tr>
</tbody>
</table>

Data

Spring 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
</tbody>
</table>
Discussion: All candidates demonstrated competency on AECT standards 3 with the exception of candidates 2 and 3 who scored lower than candidate 5. All candidates completed the instructional units for this course and achieved proficiency. Candidate 2 and 3 were provided additional feedback for the case study project, identified in the assessment #3 rubric for substandard (3.1.1, 3.1.2, 3.2.1, 3.3.1, 3.3.2, 3.3.3, 3.4.2, and 3.4.3, and provided remediation to further improve in the areas of 1) the learning technology and its utilization, 2) the attributes of diffusion of innovation, 3) communication channels and its diffusion plan, 4) policies and regulations, and 4) three dimensions of the innovation-decision process). High scores were reported for candidates 1, 2, and 3 are due to sound pedagogy, project-based practice through experiential learning, and one-on-one feedback and project reviews are specific examples to back up the result interpretations.

Section 401

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td>3.8</td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td>DNS</td>
<td></td>
<td>DNS</td>
<td>DNS</td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
<td></td>
<td>DNS</td>
<td></td>
<td>DNS</td>
<td>DNS</td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Standard Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
</tbody>
</table>

Discussion: All candidates demonstrated competency on AECT standards 3 with the exception of candidate 4* and 6* who did not submit the instructional units for this course. However, candidate 4 received an incomplete for the course. Candidate 6 submitted the final project late and did not submit the final project into TK20 due to late registration for TK20. Candidates 2 was rated lower score for sub-standard 3.2.1, 3.2.2, 3.3.3, 3.4.2, 3.4.3, identified strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1), the ability to identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2), identify strategies to maintain use after initial adoption (3.3.3), identify and apply policies which incorporate professional
ethics within practice (3.4.2), and to identify and apply copyright and fair use guidelines within practice in (3.4.3). Candidate 3 was rated lower score for substandard 3.4.2, 3.4.3 identified strategies for applying policies which incorporate professional ethics within practice (3.4.2), and applying copyright and fair use guidelines within practice in (3.4.3), for the case study project were addressed in the feedback sessions, and provided remediation to further improve in the areas of 1) the learning technology and its utilization, 2) the attributes of diffusion of innovation, 3) communication channels and its diffusion plan, and 4) three dimensions of the innovation-decision process 5) policies which incorporate professional ethics within practice. High scores were reported for candidates 1, 5 and 7, are due to sound pedagogy, project-based practice through experiential learning, and one-on-one feedback and project reviews are specific examples to back up the result interpretations.

The instructor of CIMT 630 left without leaving the data for spring 2014.

Assessment #4. Assessment of student teaching/internship/practicum etc.

Project Description:
This is supervised field work (CIMT 793) as practicum after the student has taken or when the student is close to the completion of all the coursework required on the program of study. The course is offered when it is needed. Students work on a comprehensive educational technology project serving the community under the supervision of a field supervisor, who has to have a Ph.D. degree or be working on a Ph.D. degree. The supervisors are usually school superintendents/principals, directors or professors in a unit on the ISU campus or in another local university, etc. Usually, students find a project that meets the requirements. The project has to be approved by the course instructor. If a student cannot find a project that meets the requirements, the instructor assigns a project for the student to complete. In this case, the student usually works on the instructional design team in the ISU Extended Learning center.

This project requires students to work on a comprehensive educational technology project in the real world with or without a subject matter expert following the procedure of one of the ID models and integrating learning/instructional theories into practice applying all the knowledge and skills that the student has learned from our Educational Technology program. The student usually works on the project for a total of 180 hours. The specific project requirements vary from project to project provided by the project supervisor based on each project needs; however, the project has to meet AECT Standards 1-5 and is graded using the following rubric. Students are also required to submit a self-report about the project completed using the template provided by the instructor. The self-report includes the following questions:
What project have you done?
What is the need for this project?
Who are the target learners/users?
What are the learning objectives?
What is the content area?
Which part is your contribution to this project? (Describe the task that you have done with this project.)
How did you do it? Why did you do it this way?
How much time have you spent on this project?
What skills and knowledge that you have learned from the Ed Tech program have helped you with this project?
What have you learned from doing this project?

The student is required to present and discuss the project in one of the Master’s classes or when the class is not available, to the instructor, answering all possible questions from peers or the instructor to clarify any possible confusion in the project completed.

Rubric:

<table>
<thead>
<tr>
<th>CIMT 793 MS in Ed Tech Assessment</th>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECT Standard Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Instructional Systems Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
</tr>
<tr>
<td>Score: utilize and implement design principles which specify optimal conditions for learning (1.1.a),</td>
<td>Score: utilize and implement design principles which specify optimal conditions for learning (1.1.a),</td>
<td>Score: utilize and implement design principles which specify optimal conditions for learning (1.1.a),</td>
</tr>
<tr>
<td>Score: identify a variety of instructional</td>
<td>Score: identify a variety of instructional</td>
<td>Score: identify a variety of instructional</td>
</tr>
</tbody>
</table>

9 For points calculation, please refer to Table 4.2. Calculation of student performance to meet each standard. In this column, the instructor will also communicate with the student which area(s) of each standard is/are the weak area(s) for the student to improve.
<table>
<thead>
<tr>
<th>Score:</th>
<th>systems design models and apply at least one model (1.1.b),</th>
<th>systems design models and apply at least one model (1.1.b),</th>
<th>systems design models and apply at least one model (1.1.b),</th>
<th>systems design models and apply at least one model (1.1.b),</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
</tr>
<tr>
<td>Score:</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>analyze instructional tasks, content, and context (1.1.1.b),</td>
</tr>
<tr>
<td>Score:</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
</tr>
<tr>
<td>Score:</td>
<td>and create instructional plans (micro-level)</td>
</tr>
<tr>
<td>1.2 Message Design</td>
<td>Candidates demonstrated comprehensive ability to apply principles of educational psychology, communications theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td>Candidates demonstrated sufficient ability to apply principles of educational psychology, communications theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td>Candidates demonstrated some ability to apply principles of educational psychology, communications theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td>Candidates demonstrated limited ability to apply principles of educational psychology, communications theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
</tr>
</tbody>
</table>

Score:

- Candidates demonstrated **comprehensive ability** to apply principles of educational psychology, communications theory, and visual literacy to the development of instruction.
- Candidates demonstrated **sufficient ability** to apply principles of educational psychology, communications theory, and visual literacy to the development of instruction.
- Candidates demonstrated **some ability** to apply principles of educational psychology, communications theory, and visual literacy to the development of instruction.
- Candidates demonstrated **limited ability** to apply principles of educational psychology, communications theory, and visual literacy to the development of instruction.
- No evidence of understanding message design.
<table>
<thead>
<tr>
<th>Score:</th>
<th>Instructional messages specific to the learning task (1.2.b).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>and understand, recognize and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
<td>and understand, recognize and apply basic principles of message design in the development of a variety of communications with their learners (1.2.c).</td>
</tr>
<tr>
<td>1.3 Instructional Strategies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>Score:</td>
<td>Select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>Select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>Select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>Select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>Identify at least one instructional model and demonstrate appropriate contextualized</td>
<td>Identify at least one instructional model and demonstrate appropriate contextualized</td>
<td>Identify at least one instructional model and demonstrate appropriate contextualized</td>
<td>Identify at least one instructional model and demonstrate appropriate contextualized</td>
</tr>
<tr>
<td>Score:</td>
<td>application within practice and field experiences (1.3.b),</td>
</tr>
<tr>
<td>Score:</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
</tr>
<tr>
<td>Score:</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
</tr>
<tr>
<td>1.4 Learner Characteristics</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td></td>
<td>identify a broad range of observed and hypothetical learner</td>
<td>identify a broad range of observed and hypothetical learner</td>
<td>identify a broad range of observed and hypothetical learner</td>
<td>identify a broad range of observed and hypothetical learner</td>
</tr>
<tr>
<td>Score:</td>
<td>characteristics for their particular area(s) of preparation (1.4.a).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
</tr>
<tr>
<td>Score:</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
</tr>
</tbody>
</table>

2.1 Print Technologies

<table>
<thead>
<tr>
<th>Candidates demonstrated comprehensive ability to</th>
<th>Candidates demonstrated sufficient ability to</th>
<th>Candidates demonstrated some ability to</th>
<th>Candidates demonstrated limited ability to</th>
</tr>
</thead>
<tbody>
<tr>
<td>develop instructional and professional products using a variety of technological tools to produce text for</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for</td>
<td>develop instructional and professional products using a variety of technological tools to produce text for</td>
</tr>
</tbody>
</table>

<p>| Score: | No evidence of understanding print technologies | Develop | /5 |</p>
<table>
<thead>
<tr>
<th>Score:</th>
<th>communicating information (2.1.1),</th>
<th>communicating information (2.1.1),</th>
<th>communicating information (2.1.1),</th>
<th>communicating information (2.1.1),</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>produce print communications (e.g., flyers, posters, brochures, newsletters) combining words and images/graphics using desktop publishing software (2.1.2),</td>
<td>produce print communications (e.g., flyers, posters, brochures, newsletters) combining words and images/graphics using desktop publishing software (2.1.2),</td>
<td>produce print communications (e.g., flyers, posters, brochures, newsletters) combining words and images/graphics using desktop publishing software (2.1.2),</td>
<td>produce print communications (e.g., flyers, posters, brochures, newsletters) combining words and images/graphics using desktop publishing software (2.1.2),</td>
</tr>
<tr>
<td>Score:</td>
<td>use presentation application software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3),</td>
<td>use presentation application software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3),</td>
<td>use presentation application software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3),</td>
<td>use presentation application software to produce presentations and supplementary materials for instructional and professional purposes (2.1.3),</td>
</tr>
<tr>
<td>Score:</td>
<td>and produce instructional and professional products using various aspects of integrated</td>
<td>and produce instructional and professional products using various aspects of integrated</td>
<td>and produce instructional and professional products using various aspects of integrated</td>
<td>and produce instructional and professional products using various aspects of integrated</td>
</tr>
<tr>
<td>2.2 Audiovisual Technologies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
</tr>
<tr>
<td>Score:</td>
<td>and use a variety of projection devices with appropriate technology tools to</td>
<td>and use a variety of projection devices with appropriate technology tools to</td>
<td>and use a variety of projection devices with appropriate technology tools to</td>
<td>and use a variety of projection devices with appropriate technology tools to</td>
</tr>
<tr>
<td>2.3 Computer-Based Technologies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
</tr>
<tr>
<td>Score:</td>
<td>and use imaging devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>and use imaging devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>and use imaging devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>and use imaging devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
</tr>
<tr>
<td>2.4 Integrated</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
</tr>
<tr>
<td>Technologies</td>
<td>demonstrated comprehensive ability to</td>
<td>demonstrated sufficient ability to</td>
<td>demonstrated some ability to</td>
<td>demonstrated limited ability to</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>2.4.1 Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>develop and prepare instructional materials and products for various distance education delivery technologies (2.4.2),</td>
<td>develop and prepare instructional materials and products for various distance education delivery technologies (2.4.2),</td>
<td>develop and prepare instructional materials and products for various distance education delivery technologies (2.4.2),</td>
<td>develop and prepare instructional materials and products for various distance education delivery technologies (2.4.2),</td>
</tr>
<tr>
<td>Score:</td>
<td>and use appropriate software for capturing Web pages, audio wave files, and video files for developing off-line presentations (2.4.7).</td>
<td>and use appropriate software for capturing Web pages, audio wave files, and video files for developing off-line presentations (2.4.7).</td>
<td>and use appropriate software for capturing Web pages, audio wave files, and video files for developing off-line presentations (2.4.7).</td>
<td>and use appropriate software for capturing Web pages, audio wave files, and video files for developing off-line presentations (2.4.7).</td>
</tr>
<tr>
<td>3.1 Media Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
</tr>
<tr>
<td>Utilization</td>
<td>demonstrated comprehensive ability to</td>
<td>demonstrated sufficient ability to</td>
<td>demonstrated some ability to</td>
<td>demonstrated limited ability to</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Score:</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>and use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
</tr>
<tr>
<td>3.2 Diffusion of Innovations</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>Score:</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
<td>identify strategies for the diffusion, adoption, and dissemination of innovations in learning communities (3.2.1).</td>
</tr>
<tr>
<td>3.3</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
<td>Candidates</td>
</tr>
<tr>
<td>Implementation and Institutionalization</td>
<td>demonstrated comprehensive ability to</td>
<td>demonstrated sufficient ability to</td>
<td>demonstrated some ability to</td>
<td>demonstrated limited ability to</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Score:</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
</tr>
<tr>
<td>Score:</td>
<td>and identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>and identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>and identify strategies to maintain use after initial adoption (3.3.3).</td>
<td>and identify strategies to maintain use after initial adoption (3.3.3).</td>
</tr>
<tr>
<td>3.4 Policies and Regulations</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply policies which incorporate professional ethics within practice</td>
<td>identify and apply policies which incorporate professional ethics within practice</td>
<td>identify and apply policies which incorporate professional ethics within practice</td>
<td>identify and apply policies which incorporate professional ethics within practice</td>
</tr>
</tbody>
</table>

Page 58 of 108
<table>
<thead>
<tr>
<th>4.1 Project Management</th>
<th>Score:</th>
<th>4.2 Resource Management</th>
<th>Score:</th>
<th>4.3 Delivery System Management</th>
<th>Score:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates demonstrated comprehensive ability to apply project management techniques in various learning and training contexts (4.1.1).</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>Candidates demonstrated comprehensive ability to apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>Candidates demonstrated comprehensive ability to apply project management techniques in various learning and training contexts (4.3.2).</td>
<td>Candidates demonstrated comprehensive ability to apply delivery system techniques in various learning and training contexts (4.3.2).</td>
<td>and identify and apply copyright and fair use guidelines within practice (3.4.2).</td>
</tr>
<tr>
<td>No evidence of understanding project management</td>
<td>No evidence of understanding resource management</td>
<td>No evidence of understanding delivery system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>Candidates demonstrated comprehensive ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>Candidates demonstrated sufficient ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>Candidates demonstrated some ability to apply delivery system management techniques in various learning and training contexts (4.3.1).</td>
<td>No evidence of understanding information management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score:</th>
<th>5.1 Problem Analysis</th>
<th>5.1 Problem Analysis</th>
<th>5.1 Problem Analysis</th>
<th>5.1 Problem Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply information management techniques in various learning and training contexts (4.4.1).</td>
<td>Candidates demonstrated comprehensive ability to apply information management techniques in various learning and training contexts (4.4.1).</td>
<td>Candidates demonstrated sufficient ability to apply information management techniques in various learning and training contexts (4.4.1).</td>
<td>Candidates demonstrated some ability to apply information management techniques in various learning and training contexts (4.4.1).</td>
<td>No evidence of understanding problem analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score:</th>
<th>5.2 Criterion-Referenced</th>
<th>5.2 Criterion-Referenced</th>
<th>5.2 Criterion-Referenced</th>
<th>5.2 Criterion-Referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrated comprehensive ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrated sufficient ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>Candidates demonstrated some ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>No evidence of understanding problem analysis</td>
</tr>
<tr>
<td>Measurement</td>
<td>comprehensive ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>sufficient ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>limited ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>Candidates demonstrated comprehensive ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated sufficient ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated some ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated limited ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
</tr>
<tr>
<td>5.3 Formative and summative Evaluation</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
</tr>
<tr>
<td>Score:</td>
<td>Overall Comments</td>
<td>Total Points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Overall Comments | 10 | Total Points |

Table 4.1. Standards to meet

| AECT Standards for MS in Ed Tech | Performances related to the Standards |

10 The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.

11 Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
Table 4.2. Calculation of student performance to meet each standard:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>Design Score = sum of (1.1.a + 1.1.b + 1.1.c + 1.1.1,a + 1.1.1.b + 1.1.1.c + 1.1.2.b + 1.2.a + 1.2.b + 1.2.c + 1.3.a + 1.3.b + 1.3.c + 1.3.d + 1.4.a + 1.4.b + 1.4.c)/17</td>
<td>Design Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/17 = 5</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>Development Score = sum of (2.1.1 + 2.1.2 + 2.1.3 + 2.1.4 + 2.2.1 + 2.2.2 + 2.2.4 + 2.3.1 + 2.3.2 + 2.3.3 + 2.4.1 + 2.4.2 + 2.4.7)/13</td>
<td>Development Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/13 = 5</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.1 + 3.1.2 + 3.2.1 + 3.3.1 + 3.3.2 + 3.3.3 + 3.4.2 + 3.4.3)/8</td>
<td>Utilization Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/8 = 5</td>
</tr>
<tr>
<td>Standard 4 Management</td>
<td>Management Score = sum of (4.1.1 + 4.2.1 + 4.3.1 + 4.4.1)/4</td>
<td>Management Score = (5+5+5+5)/4 = 5</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1 + 5.3.1)/3</td>
<td>Evaluation Score = (5+5+5)/3 = 5</td>
</tr>
</tbody>
</table>

Data:

Spring 2013
Discussion:
This course is a culminating experience for students. According to the requirements for this course, all candidates demonstrated competency in each of the standards included with this assessment. Candidates’ projects as well as self-reports provided evidence of congruency and soundness in the pedagogy and delivery of instruction. Student 1’s project is a Website for our department’s Graduate Certificate program of Instructional Design, which will be used for AECT endorsement review. Student 2’s project is designing and developing an online course for a professor on the ISU campus. The above evaluations are from their project supervisors and validated by the instructor.

Summer 2013

<table>
<thead>
<tr>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.76</td>
<td>4.92</td>
<td>4.75</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.65</td>
<td>4.77</td>
<td>4.88</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Standard Average</td>
<td>4.8</td>
<td>4.9</td>
<td>4.88</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Discussion: Students 1’s project involved utilizing raw video footage from EERC-sponsored statewide conference on special education to develop 3 short professional development video modules for potential dissemination on project website. Student 2’s project provided a resource for the First Generation Mentoring Program on the ISU campus. Student 3 designed five Website templates for an international conference. All three students demonstrated competency in each of the standards included with this assessment. Candidates’ projects as well as self-reports provided evidence of congruency and soundness in the pedagogy and delivery of instruction.
Fall 2013

<table>
<thead>
<tr>
<th>Standard Average</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Standard Average</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Discussion: The project the student did was Quality Matters Pilot with the Baccalaurate Nursing Completion (BNC) online program at Indiana State University. The student did a perfect job on the project.

Spring 2014

<table>
<thead>
<tr>
<th>Standard Average</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.71</td>
<td>4.77</td>
<td>4.38</td>
<td>4.25</td>
<td>4.33</td>
<td>4.49</td>
</tr>
<tr>
<td>Student 1</td>
<td>4.71</td>
<td>4.77</td>
<td>4.38</td>
<td>4.25</td>
<td>4.33</td>
<td>4.49</td>
</tr>
<tr>
<td>Standard Average</td>
<td>4.71</td>
<td>4.77</td>
<td>4.38</td>
<td>4.25</td>
<td>4.33</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Discussion: The students took the practicum at Saint Mary-of-the-Woods College's Faculty Resource Center (FRC). Her project consisted of two parts: Create an FAQ for Faculty members of Saint Mary-of-the-Woods College to utilize to ease the transition into the new Desire to Learn (D2L) platform, and assist faculty members in editing their courses and using technology to enhance their student's learning. Additionally, the student began the process of creating a promotional video for the Wood's online newsletter, however time constraints ultimately forced the video to be cancelled. The student received good evaluation from the supervisor at Saint Mary-of-the-Woods College.

Summer 2014
Discussion: Three students took the practicum on the ISU campus with the distance learning center on the online Blackboard courses. Two students meet the requirements. Student 3’s performance evaluation was not idea from his supervisor: “Overall, his creation of the videos was sufficient but did not truly meet the original nature of the assignment. He did not fully address copyright for images used. He limited his technology used to only the ones (Camtasia/Prezi) he already had access to and did not explore suggested software, such as Softchalk. He limited the learning contexts to only video or text. With relevance to ADA compliance, the student skirted the issue by using the same texts as scripts. Moreover, there were no attempts made to provide a storyboard or other plan for the videos. He did not provide a learner analysis beyond the general description given by the supervisor.” The student’s problem is more a behavior one than the performance deficiency. Student 4 took the practicum at Saint Mary-of-the-Woods College with the department of Graduate and online programs. She worked on two videos: 1) The Master of Art Therapy Art Thesis Exhibition, and 2) The Success Story of Lorrie Heber. Both video projects were for the online newsletter “One Woods.” She received excellent evaluation from her supervisor.

Fall 2014

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment #5: Assessment of candidate effect on student/client learning

Project Description:
Assessment #5 provides evidence of candidate effect on student learning. Specifically, the evaluation project in CIMT 620 requires candidates to evaluate the assessment strategy (pre-, post-, and practice-test) they have created, against a set of terminal and subordinate objectives identified in the learning task analysis. Evidence of impact on client learning comes from pre- and posttest data for a sample of learners, collected during formative evaluation in order to improve upon the instructional products. The effectiveness of the instructional materials and subsequent effect on client learning, for learners in the sample, is determined by gap analysis of the pre- and posttest data sets as a measure of whether learning goals have been met.

Rubric:

<table>
<thead>
<tr>
<th>CIMT 620 MS in Ed Tech Assessment AECT Standard Elements</th>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 Exemplary</td>
<td>4 Proficient</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.1 Problem Analysis</th>
<th>Candidates demonstrate comprehensive ability to</th>
<th>Candidates demonstrate sufficient ability to</th>
<th>Candidates demonstrate some ability to</th>
<th>Candidates demonstrate limited ability to</th>
<th>No evidence of understanding problem analysis</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>identify and apply problem analysis skills in</td>
<td>/5</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5.2 Criterion-Referenced Measurement</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
<td>No evidence of understanding criterion-referenced measurement</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Formative and summative Evaluation</td>
<td>Candidates demonstrate comprehensive ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate some ability to</td>
<td>Candidates demonstrate limited ability to</td>
<td>No evidence of understanding formative and summative evaluation</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1. Standards to meet

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Performances related to the Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 5 Evaluation</td>
<td>5.1.1, 5.2.1, 5.3.1</td>
</tr>
</tbody>
</table>

Table 5.2. Calculation of student performance to meet each standard:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1 + 5.3.1)/3</td>
<td>Evaluation Score = (5+5+5)/3 = 5</td>
</tr>
</tbody>
</table>

Data:

Spring 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

12 The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.

13 Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
<table>
<thead>
<tr>
<th>Student 4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 5</td>
<td>4</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.3</td>
</tr>
<tr>
<td>Student 7</td>
<td>3.7</td>
</tr>
<tr>
<td>Student 8</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 9</td>
<td>2.7</td>
</tr>
<tr>
<td>Student 10</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 11</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 12</td>
<td>2.7</td>
</tr>
<tr>
<td>Student 13</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 14</td>
<td>5.0</td>
</tr>
<tr>
<td>Student Average</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning. Outlier data for student 7 and student 9 reflect an insufficient sample size of tryout learners, reducing the validity of the evaluation.

Summer 2013
<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Development</th>
<th>Utilization</th>
<th>Management</th>
<th>Evaluation</th>
<th>Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
</tbody>
</table>

Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning.

Fall 2013

Section 401
<table>
<thead>
<tr>
<th>Student</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.5</td>
</tr>
<tr>
<td>Student 3</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.0</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.0</td>
</tr>
<tr>
<td>Student 6</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 7</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 8</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 9</td>
<td>3.5</td>
</tr>
<tr>
<td>Student 10</td>
<td>4.3</td>
</tr>
<tr>
<td>Student 11</td>
<td>4.0</td>
</tr>
<tr>
<td>Student 12</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 13</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 14</td>
<td>2.0</td>
</tr>
<tr>
<td>Student 15</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 16</td>
<td>3.7</td>
</tr>
<tr>
<td>Student 17</td>
<td>5.0</td>
</tr>
<tr>
<td>Student 18</td>
<td>5.0</td>
</tr>
<tr>
<td>Student Average</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning.

<table>
<thead>
<tr>
<th>Student</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Student 6 developed an evaluation plan, however, did not implement the plan or collect data from the field trial. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation.
evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning.

Spring 2014

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Student 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Student 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Student Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
</tbody>
</table>
Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning. Outlier data for student 9 reflects an insufficient sample size of tryout learners, reducing the validity of the evaluation.

Summer 2014

<table>
<thead>
<tr>
<th>Student 1</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Student 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Student 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Student 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>
Assessment #6. Additional assessment that addresses AECT standards

Project Description:
The assessment is a final project of CIMT 689. This project requires students to design and develop a training manual on instructional strategies (as the learning content area) to instructional designers (as target learners) following the procedure of one of the ID models and integrating learning/instructional theories into practice. Consistent with instructional design projects in other courses in the program, the following major elements are emphasized about instruction of any type and using any media: An instructional/learning goal, learning objectives, instructional strategies, activities and practices, feedback, and the assessment. The design also needs to include diversity concerns and the APA style is required for citing references. Unlike in other courses where students choose a topic and the target learners for the project, this project requires students to focus on the content area of instructional strategies and the target audience of professionals in the field. CIMT 689 is a course at a more advanced level than CIMT 620, 630, 640; the requirements are not at the fundamental level and the scope of the instruction is not small. This learning task requires students to demonstrate a higher order of critical thinking skills.

The focus of this project is designed on how to identify, select, and use instructional strategies in various instructional/learning situations. The requirements include developing at least five chapters, each chapter discussing one instructional strategy/approach. Within each chapter, students need to include the following contents, each under an individual subheading:

- What it is (description of the strategy/approach),

Discussion: Candidates demonstrated competency in each of the sub-standards included in Standard 5 (Evaluation), which is the focus of this assessment. Formative evaluation results are examined in detail in Assessment #2. The principal focus for this assessment, however, is effectiveness of the instructional materials and specifically, assessment of candidate effect on client learning. Candidates supervised a field trial with an optimal sample size of 18-25 representative learners; most candidates had fewer representative learners to work with. Data was collected and analyzed using the first two levels of Kirkpatrick's evaluation model. A survey was given to learners to measure reaction to instructional materials, in order to determine the suitability of materials for the target audience, in the level one evaluation. The level two evaluation consisted of pre- and posttests to assess learning from the instructional materials using the criterion-referenced measures developed by the candidates within their respective projects. Posttest data reported by each candidate for learners in the field trial consistently demonstrated a positive impact on client learning. Outlier data for student 1 and student 4 reflects an insufficient sample size of tryout learners and analysis of data reported, reducing the validity of the evaluation.
When to select and use it (conditions of use),
Why it should be selected (research on effectiveness of the strategy),
How it is best utilized, and
Related research and references

There are eleven reading reflections including online critiques and debates, a term paper including online critiques and debates, and this final project including online critiques and debates as course requirements for CIMT 689. This project meets all of the eight learning objectives for the course. The project meets AECT Standards 1-5. Students’ projects are graded using the following rubric.

<table>
<thead>
<tr>
<th>CIMT 689 MS in Ed Tech Assessment AECT Standard Elements</th>
<th>Criteria</th>
<th>5 Exemplary</th>
<th>4 Proficiency</th>
<th>3 Developing</th>
<th>2 Unsatisfactory</th>
<th>1 Not evident</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Instructional Systems Design</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analyze instructional tasks, content, and context</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score: **14**

For points calculation, please refer to Table 6.2. *Calculation of student performance to meet each standard*. In this column, the instructor will also communicate with the student which area(s) of each standard is/are the weak area(s) for the student to improve.
<table>
<thead>
<tr>
<th>Score:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Message Design</td>
</tr>
<tr>
<td>Candidates demonstrated comprehensive ability to apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
</tr>
<tr>
<td>Candidates demonstrated sufficient ability to apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
</tr>
<tr>
<td>Candidates demonstrated some ability to apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
</tr>
<tr>
<td>Candidates demonstrated limited ability to apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
</tr>
<tr>
<td>No evidence of understanding message design</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>1.3 Instructional Strategies</td>
</tr>
<tr>
<td>Candidates demonstrated comprehensive ability to select instructional</td>
</tr>
<tr>
<td>Candidates demonstrated sufficient ability to select instructional</td>
</tr>
<tr>
<td>Candidates demonstrated some ability to select instructional</td>
</tr>
<tr>
<td>Candidates demonstrated limited ability to select instructional</td>
</tr>
<tr>
<td>No evidence of understanding instructional strategies</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1.3.a</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>1.4 Learner Characteristics</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>3.1 Media Utilization</td>
</tr>
<tr>
<td>3.2 Diffusion of Innovations</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>3.3 Implementation and Institutionalization</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td>3.4 Policies and</td>
</tr>
<tr>
<td>Regulations</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Score:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Score:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.2 Resource Management</th>
<th>Candidates demonstrated comprehensive ability to</th>
<th>Candidates demonstrated sufficient ability to</th>
<th>Candidates demonstrated some ability to</th>
<th>Candidates demonstrated limited ability to</th>
<th>No evidence of understanding resource management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td>apply resource management techniques in various learning and training contexts (4.2.1).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.3 Delivery System Management</th>
<th>Candidates demonstrated comprehensive ability to</th>
<th>Candidates demonstrated sufficient ability to</th>
<th>Candidates demonstrated some ability to</th>
<th>Candidates demonstrated limited ability to</th>
<th>No evidence of understanding delivery system management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply delivery</td>
<td>apply delivery</td>
<td>apply delivery</td>
<td>apply delivery</td>
<td></td>
</tr>
</tbody>
</table>

Score: 4/5
4.4 Information Management

<table>
<thead>
<tr>
<th>Score:</th>
<th>Candidates demonstrated comprehensive ability to apply information management techniques in various learning and training contexts (4.4.1).</th>
<th>Candidates demonstrated sufficient ability to apply information management techniques in various learning and training contexts (4.4.1).</th>
<th>Candidates demonstrated some ability to apply information management techniques in various learning and training contexts (4.4.1).</th>
<th>Candidates demonstrated limited ability to apply information management techniques in various learning and training contexts (4.4.1).</th>
<th>No evidence of understanding information management</th>
</tr>
</thead>
</table>

5.1 Problem Analysis

<table>
<thead>
<tr>
<th>Score:</th>
<th>Candidates demonstrated comprehensive ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</th>
<th>Candidates demonstrated sufficient ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</th>
<th>Candidates demonstrated some ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</th>
<th>Candidates demonstrated limited ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</th>
<th>No evidence of understanding problem analysis</th>
</tr>
</thead>
</table>

5.2 Criterion-

<table>
<thead>
<tr>
<th>Score:</th>
<th>Candidates</th>
<th>Candidates</th>
<th>Candidates</th>
<th>Candidates</th>
<th>No evidence of</th>
<th>Evaluation</th>
</tr>
</thead>
</table>

Page 84 of 108
<table>
<thead>
<tr>
<th>Referenced Measurement</th>
<th>demonstrated comprehensive ability to</th>
<th>demonstrated sufficient ability to</th>
<th>demonstrated some ability to</th>
<th>demonstrated limited ability to</th>
<th>understanding criterion-referenced measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td></td>
</tr>
<tr>
<td>5.3 Formative and summative Evaluation</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding formative and summative evaluation</td>
</tr>
<tr>
<td>Score:</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td>develop and apply formative and summative evaluation strategies in a variety of ECIT contexts (5.3.1).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Comments¹⁵:</th>
<th>Total Points¹⁶</th>
</tr>
</thead>
</table>

Table 6.1 Standards to meet:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Performances related to the Standards</th>
</tr>
</thead>
</table>

¹⁵ The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.
¹⁶ Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
Table 6.2 Calculation of student performance to meet each standard:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>Design Score = sum of (1.1.1,a + 1.1.1.b + 1.1.1.c + 1.2.b + 1.3.a + 1.3.c + 1.3.d + 1.4.a + 1.4.b + 1.4.c)/10</td>
<td>Design Score = (5+5+5+5+5+5+5+5+5+5)/10 = 5</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>Development Score = sum of (2.1.1 + 2.1.4 + 2.2.1)/3</td>
<td>Development Score = (5+5+5)/3 = 5</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.2 + 3.2.1 + 3.3.1 + 3.3.2 + 3.3.3 + 3.4.2 + 3.4.3)/7</td>
<td>Utilization Score = (5+5+5+5+5+5+5)/7 = 5</td>
</tr>
<tr>
<td>Standard 4 Management</td>
<td>Management Score = sum of (4.2.1 + 4.3.1 + 4.4.1)/3</td>
<td>Management Score = (5+5+5)/3 = 5</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1 + 5.3.1)/3</td>
<td>Evaluation Score = (5+5+5)/3 = 5</td>
</tr>
</tbody>
</table>

Data:
Spring 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4.94</td>
</tr>
<tr>
<td>Student 2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Page 86 of 108
Discussion:
This course is a higher-level course and the project requirements are set higher: integrating theories into practical instructional design. Seven candidates demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy. Lower aggregate score was noted in Standards 1 (Design) for Student 3, the reason for which was the student did not write the learning objective using the correct 3-component format. With the feedback from the instructor, she understood what she needed to improve for the learning objective writing.

Summer 2013

<table>
<thead>
<tr>
<th>Student</th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3.67</td>
<td>3.934</td>
</tr>
<tr>
<td>Student 3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.8</td>
<td>5</td>
<td>4.57</td>
<td>5</td>
<td>5</td>
<td>4.874</td>
</tr>
<tr>
<td>Student 5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4.72</td>
</tr>
<tr>
<td>Standard Average</td>
<td>4.771429</td>
<td>4.714286</td>
<td>4.795714</td>
<td>4.857143</td>
<td>4.81</td>
<td>4.789714</td>
</tr>
</tbody>
</table>
Discussion: This course is a higher-level course and the project requirements are set higher: integrating theories into practical instructional design. Seven candidates demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy. Lower aggregate score was noted in Standards 5 (Evaluation) for Student 2, the reason for which was the student did not design the assessment specifically focusing on her target learners. With the feedback from the instructor, she understood what she needed to improve for the design of assessments.

Fall 2013

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>3.80</td>
<td>5.00</td>
<td>4.57</td>
<td>4.00</td>
<td>4.00</td>
<td>4.27</td>
</tr>
<tr>
<td>Student 2</td>
<td>4.70</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>4.67</td>
<td>4.87</td>
</tr>
<tr>
<td>Standard Average</td>
<td>4.25</td>
<td>5.00</td>
<td>4.79</td>
<td>4.50</td>
<td>4.33</td>
<td>4.57</td>
</tr>
</tbody>
</table>

Discussion: Student 2 demonstrated competency in each of the standards included with this assessment. Her projects provided evidence of congruency and soundness in the pedagogy. However, while Student 1 met criteria of Standards 2 through 5 well, lower aggregate score was noted in Standards 1 (Design), the reason for which was the student had some deficiencies on the learning task analysis; therefore, he was not quite able to sequence the learning objectives in a right order. With the feedback from the instructor, he understood what he needed to improve for the learning task analysis.

Spring 2014

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.2</td>
<td>4.33</td>
<td>4.57</td>
<td>5</td>
<td>4.33</td>
<td>4.486</td>
</tr>
<tr>
<td>Student 2</td>
<td>5</td>
<td>5</td>
<td>4.71</td>
<td>4</td>
<td>4.33</td>
<td>4.608</td>
</tr>
<tr>
<td>Student 3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Student 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.9</td>
<td>5</td>
<td>4.86</td>
<td>5</td>
<td>5</td>
<td>4.952</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.4</td>
<td>5</td>
<td>4.57</td>
<td>5</td>
<td>4.33</td>
<td>4.66</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.6</td>
<td>5</td>
<td>4.71</td>
<td>5</td>
<td>4.33</td>
<td>4.728</td>
</tr>
<tr>
<td>Student 8</td>
<td>5</td>
<td>5</td>
<td>4.71</td>
<td>5</td>
<td>4.67</td>
<td>4.876</td>
</tr>
<tr>
<td>Standard Average</td>
<td>4.5125</td>
<td>4.66625</td>
<td>4.51625</td>
<td>4.625</td>
<td>4.37375</td>
<td>4.53875</td>
</tr>
</tbody>
</table>

Discussion: This course is a higher-level course and the project requirements are set higher: integrating theories into practical instructional design. Eight candidates demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy.

Summer 2014

<table>
<thead>
<tr>
<th></th>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4.90</td>
<td>5.00</td>
<td>4.71</td>
<td>5.00</td>
<td>4.67</td>
<td>4.86</td>
</tr>
<tr>
<td>Student 2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4.2</td>
</tr>
<tr>
<td>Student 3</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Student 4</td>
<td>4.80</td>
<td>4.00</td>
<td>4.29</td>
<td>4.00</td>
<td>4.67</td>
<td>4.35</td>
</tr>
<tr>
<td>Student 5</td>
<td>4.30</td>
<td>4.00</td>
<td>4.14</td>
<td>4.00</td>
<td>4.33</td>
<td>4.15</td>
</tr>
<tr>
<td>Student 6</td>
<td>4.00</td>
<td>5.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.20</td>
</tr>
<tr>
<td>Student 7</td>
<td>4.60</td>
<td>5.00</td>
<td>4.29</td>
<td>4.00</td>
<td>4.33</td>
<td>4.44</td>
</tr>
<tr>
<td>Student 8</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>3.67</td>
<td>4.73</td>
</tr>
<tr>
<td>Student 9</td>
<td>3.90</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.98</td>
</tr>
<tr>
<td>Student 10</td>
<td>4.30</td>
<td>4.67</td>
<td>4.00</td>
<td>5.00</td>
<td>4.00</td>
<td>4.39</td>
</tr>
<tr>
<td>Student 11</td>
<td>3.30</td>
<td>4.00</td>
<td>3.29</td>
<td>3.00</td>
<td>3.33</td>
<td>3.38</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Student 12</td>
<td>5.00</td>
<td>4.00</td>
<td>4.86</td>
<td>4.00</td>
<td>4.00</td>
<td>4.37</td>
</tr>
<tr>
<td>Standard Average**</td>
<td>**4.36</td>
<td>**4.47</td>
<td>**4.23</td>
<td>**4.17</td>
<td>**4.08</td>
<td>4.26</td>
</tr>
</tbody>
</table>

Discussion: This course is a higher-level course and the project requirements are set higher: integrating theories into practical instructional design. Nine candidates demonstrated competency in each of the standards included with this assessment. Their projects provided evidence of congruency and soundness in the pedagogy. Two candidates, while competent in four standards, show a lower competency in one standard, Student 8 in Standard 5 (Evaluation, 3.67) and Student 9 in Standard 1 (Design, 3.9). The reasons for the lower scores are 1) Student 8 did not fully understand the requirement for the assessment, so her assessment part lost points, which was not really her deficiency in evaluation; and 2) Student 9 didn’t write the learning objectives in a correct 3-component format as required. With the feedback from the instructor, she understood what she needed to improve for the learning objective writing. Student 11 struggled with the course throughout the semester. The instructor provided individual feedback and help; however, she didn’t seem able to meet the requirement of this course well.

Assessment #7: Additional assessment that addresses AECT standards

Projects Description

CIMT 543 course data provided evidence of content knowledge in educational communications and instructional technology (ECIT), through demonstrated application of an instructional design (ID) model based on the “ASSURE” model from Smaldino, Lowther, and Russell (2012). Although all projects must be submitted individually, candidates have the opportunity to ask questions, and collaborate with peers throughout the semester to successfully complete CIMT 543. CIMT 543 is a foundational course which is a required course for candidates who are admitted in the Master of Educational Technology Program. Candidates learning outcomes are assessed based on the four AECT standards (i.e., design, development, utilization, and evaluation), employing a 5 point rubric. Each assignment employs experiential learning therefor most assignments tend to move through multiple iterations to demonstrate candidate’s ability to design and develop instructional material, by implementing one of the ID models (ASSURE MODEL). In order to support the large percentage of English as a New Language learners who need extensive scaffolding of graduate level literacy skills, projects are divided into eight short assignments over the course of the semester. The ASSURE lesson plan serves as a framework for instructional units and included the following components’ analyze learners, state standards and/or objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision. Within those categories, candidates are expected to create and integrate a short digital graphics story in support of stated instructional objects. Candidates demonstrated understanding of visual principles by drawing a storyboard, capturing, and sketching for effective communications in order to produce a short 2-3 minutes of instructional Audio/Video for teaching in the classroom. After completion of the video, candidates prepared a report as a summative
component of a Multimedia Kit for teaching and learning activities in a classroom. As part of the Multimedia kit, candidates demonstrated capacity to employ various software and basic visual literacy principles through the production of a trifold Research Presentation poster using PowerPoint/Microsoft Publisher and a Webquest using Google sites as a platform for dissemination of the instructional unit. In each project candidates demonstrated the ability to apply the ASSURE model.

Candidates were asked to prepare a short and concise Grant Proposal describing how funds would be used to complete an instructional unit for a school project. Within the Grant Proposal, candidates were expected to demonstrate the ability to employ digital management through the use of budgeting, spreadsheets, detailed expense reports, and a timeline for production benchmarks.

Rubric

Table 7.1

<table>
<thead>
<tr>
<th>CIMT 543 MS in Ed Tech Assessment AECT Standard Elements</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Instructional Systems Design</td>
<td>Candidates demonstrated comprehensive ability to</td>
</tr>
<tr>
<td>Score:</td>
<td>utilize and implement design principles which specify optimal conditions for learning (1.1.a),</td>
</tr>
</tbody>
</table>

For points calculation, please refer to Table 7.2. *Calculation of student performance to meet each standard.* In this column, the instructor will also communicate with the student which area(s) of each standard is/are the weak area(s) for the student to improve.
<table>
<thead>
<tr>
<th>Score:</th>
<th>identify a variety of instructional systems design models and apply at least one model (1.1.b),</th>
<th>identify a variety of instructional systems design models and apply at least one model (1.1.b),</th>
<th>identify a variety of instructional systems design models and apply at least one model (1.1.b),</th>
<th>identify a variety of instructional systems design models and apply at least one model (1.1.b),</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
<td>identify learning theories from which each model is derived and the consequent implications (1.1.c),</td>
</tr>
<tr>
<td>Score:</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
<td>write appropriate objectives for specific content and outcome levels (1.1.1.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>analyze instructional tasks, content, and</td>
<td>analyze instructional tasks, content,</td>
<td>analyze instructional tasks, content,</td>
<td>analyze instructional tasks, content,</td>
</tr>
<tr>
<td>Score:</td>
<td>context (1.1.1.b), and context (1.1.1.b), and context (1.1.1.b), and context (1.1.1.b),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td>categorize objectives using an appropriate schema or taxonomy (1.1.1.c).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>and create instructional plans (micro-level design) that address the needs of all learners, including appropriate accommodations for learners with special needs (1.1.2.b).</td>
<td>and create instructional plans (micro-level design) that address the needs of all learners, including appropriate accommodations for learners with special needs (1.1.2.b).</td>
<td>and create instructional plans (micro-level design) that address the needs of all learners, including appropriate accommodations for learners with special needs (1.1.2.b).</td>
<td></td>
</tr>
<tr>
<td>1.2 Message Design</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td></td>
<td>apply principles of educational psychology, communications</td>
<td>apply principles of educational psychology,</td>
<td>apply principles of educational psychology,</td>
<td>No evidence of understanding message design</td>
</tr>
<tr>
<td>Score:</td>
<td>apply principles of educational psychology, communications</td>
<td>apply principles of educational psychology,</td>
<td>apply principles of educational psychology,</td>
<td>apply principles of educational psychology, communications</td>
</tr>
<tr>
<td>Score:</td>
<td>and understand, recognize and apply basic principles of message design in the development of a variety of</td>
<td>and understand, recognize and apply basic principles of message design in the</td>
<td>and understand, recognize and apply basic principles of message design in the</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td>communication theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td>communication theory, and visual literacy to the selection of media for macro- and micro-level design of instruction (1.2.a),</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
<td>apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
<td>apply principles of educational psychology, communications theory, and visual literacy to the development of instructional messages specific to the learning task (1.2.b).</td>
<td></td>
</tr>
<tr>
<td>1.3 Instructional Strategies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
<td>select instructional strategies appropriate for a variety of learner characteristics and learning situations (1.3.a),</td>
</tr>
<tr>
<td>Score:</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
<td>identify at least one instructional model and demonstrate appropriate contextualized application within practice and field experiences (1.3.b),</td>
</tr>
<tr>
<td>Score:</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
<td>analyze their selection of instructional strategies and/or models as influenced by the learning situation, nature of the specific content, and type of learner objective (1.3.c),</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
<td>and select motivational strategies appropriate for the target learners, task, and learning situation (1.3.d).</td>
</tr>
<tr>
<td>1.4 Learner Characteristics</td>
<td>Candidates demonstrated comprehensive ability to identify a broad range of observed and hypothetical</td>
<td>Candidates demonstrated sufficient ability to identify a broad range of observed and</td>
<td>Candidates demonstrated some ability to identify a broad range of observed and</td>
<td>Candidates demonstrated limited ability to identify a broad range of observed and</td>
</tr>
<tr>
<td></td>
<td>No evidence of understanding learner characteristics</td>
</tr>
<tr>
<td>Score:</td>
<td>learner characteristics for their particular area(s) of preparation (1.4.a).</td>
<td>hypothetical learner characteristics for their particular area(s) of preparation (1.4.a).</td>
<td>hypothetical learner characteristics for their particular area(s) of preparation (1.4.a).</td>
<td>hypothetical learner characteristics for their particular area(s) of preparation (1.4.a).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Score:</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
<td>describe and/or document specific learner characteristics which influence the selection of instructional strategies (1.4.b).</td>
</tr>
<tr>
<td>Score:</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
<td>and describe and/or document specific learner characteristics which influence the implementation of instructional strategies (1.4.c).</td>
</tr>
</tbody>
</table>

2.2 Audiovisual Technologies

<p>| Candidates demonstrated | Candidates demonstrated | Candidates demonstrated | Candidates demonstrated | No evidence of understanding |</p>
<table>
<thead>
<tr>
<th>Score:</th>
<th>comprehensive ability to</th>
<th>sufficient ability to</th>
<th>some ability to</th>
<th>limited ability to</th>
<th>audiovisual technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td>apply principles of visual and media literacy for the development and production of instructional and professional materials and products (2.2.1),</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td>apply development techniques such as storyboarding and or scriptwriting to plan for the development of audio/video technologies (2.2.2),</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>and use a variety of projection devices with appropriate</td>
<td>and use a variety of projection devices with</td>
<td>and use a variety of projection devices with</td>
<td>and use a variety of projection devices with</td>
<td></td>
</tr>
<tr>
<td>2.3 Computer-Based Technologies</td>
<td>Candidates demonstrate complete ability to</td>
<td>Candidates demonstrate sufficient ability to</td>
<td>Candidates demonstrate average ability to</td>
<td>Candidates demonstrate limited ability to</td>
<td>No evidence of understanding computer-based technologies</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>technology tools to facilitate presentations and instruction (2.2.4)</td>
<td>appropriate technology tools to facilitate presentations and instruction (2.2.4)</td>
<td>appropriate technology tools to facilitate presentations and instruction (2.2.4)</td>
<td>appropriate technology tools to facilitate presentations and instruction (2.2.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td>design and produce audio/video instructional materials which use computer-based technologies (2.3.1),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td>design, produce, and use digital information with computer-based technologies (2.3.2),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and use imaging devices (e.g.,</td>
<td>and use imaging</td>
<td>and use imaging</td>
<td>and use imaging</td>
<td>and use imaging devices (e.g.,</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>devices (e.g., digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td>digital cameras, video cameras, scanners) to produce computer based instructional materials (2.3.3).</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2.4 Integrated Technologies</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No evidence of understanding integrated technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td>Use authoring tools to create effective hypermedia/multimedia instructional materials or products (2.4.1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>develop and prepare instructional materials and products for various distance education delivery</td>
<td>develop and prepare instructional materials and products for various distance</td>
<td>develop and prepare instructional materials and products for various distance</td>
<td>develop and prepare instructional materials and products for various distance education</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>3.1 Media Utilization</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
<td>identify key factors in selecting and using technologies appropriate for learning situations specified in the instructional design process (3.1.1),</td>
</tr>
<tr>
<td>Score:</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td>use educational communications and instructional technology (ECIT) resources in a variety of learning contexts (3.1.2).</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3.3 Implementation and Institutionalization</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td>use appropriate instructional materials and strategies in various learning contexts (3.3.1).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td>identify and apply techniques for integrating ECIT innovations in various learning contexts (3.3.2).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>Candidates demonstrated comprehensive ability to</td>
<td>Candidates demonstrated sufficient ability to</td>
<td>Candidates demonstrated some ability to</td>
<td>Candidates demonstrated limited ability to</td>
<td>No evidence of understanding policies and regulations</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.4 Policies and Regulations</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td>identify and apply policies which incorporate professional ethics within practice (3.4.2).</td>
<td></td>
</tr>
<tr>
<td>Score:</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td>identify and apply copyright and fair use guidelines within practice (3.4.3).</td>
<td></td>
</tr>
<tr>
<td>5.1 Problem Analysis</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>Candidates demonstrated</td>
<td>No evidence of understanding</td>
</tr>
<tr>
<td>Score:</td>
<td>comprehensive ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>sufficient ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>some ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>limited ability to identify and apply problem analysis skills in appropriate educational communications and instructional technology (ECIT) contexts (5.1.1).</td>
<td>problem analysis</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.2 Criterion-Referenced Measurement</td>
<td>Candidates demonstrated comprehensive ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated sufficient ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated some ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>Candidates demonstrated limited ability to develop and apply criterion-referenced measures in a variety of ECIT contexts (5.2.1).</td>
<td>No evidence of understanding criterion-referenced measurement</td>
</tr>
<tr>
<td>Score:</td>
<td>Candidates demonstrated comprehensive ability to develop and apply formative and summative evaluation</td>
<td>Candidates demonstrated sufficient ability to develop and apply formative and summative evaluation</td>
<td>Candidates demonstrated some ability to develop and apply formative and summative evaluation</td>
<td>Candidates demonstrated limited ability to develop and apply formative and summative evaluation</td>
<td>No evidence of understanding formative and summative evaluation</td>
</tr>
</tbody>
</table>
Table 7.1. Standards to meet

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Performances related to the Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Design</td>
<td>1.1.a, 1.1.b, 1.1.c, 1.1.1.a, 1.1.1.b, 1.1.1.c, 1.1.2.b, 1.2.a, 1.2.b, 1.2.c, 1.3.a, 1.3.b, 1.3.c, 1.3.d, 1.4.a, 1.4.b, 1.4.c</td>
</tr>
<tr>
<td>Standard 2 Development</td>
<td>2.2.1, 2.2.2, 2.2.4, 2.3.1, 2.3.2, 2.3.3, 2.4.1, 2.4.2, 2.4.7</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>3.1.1, 3.1.2, 3.3.1, 3.3.2, 3.3.3, 3.4.2, 3.4.3</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>5.1.1, 5.2.1, 5.3.1</td>
</tr>
</tbody>
</table>

Table 7.2. Calculation of student performance to meet each standard:

<table>
<thead>
<tr>
<th>AECT Standards for MS in Ed Tech</th>
<th>Calculation of Score Obtained for Each Standard</th>
<th>An Example (assume this student gets all 5s)</th>
</tr>
</thead>
</table>

18 The instructor will provide overall comments on the student’s strength and weakness of the project and advise the student how to improve to make progress.

19 Total points that the student gets of Design + Development + Utilization + Management + Evaluation; Total possible is 25 points.
<table>
<thead>
<tr>
<th>Standard 1 Design</th>
<th>Design Score = sum of (1.1.a + 1.1.b + 1.1.c + 1.1.1.a + 1.1.1.b + 1.1.1.c + 1.1.2.a + 1.2.b + 1.2.c + 1.3.a + 1.3.b + 1.3.c + 1.3.d + 1.4.a + 1.4.b + 1.4.c)/17</th>
<th>Design Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/17 = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 2 Development</td>
<td>Development Score = sum of (2.1.1 + 2.1.2 + 2.1.3 + 2.1.4 + 2.2.1 + 2.2.2 + 2.2.4 + 2.3.1 + 2.3.2 + 2.3.3 + 2.4.1 + 2.4.2 + 2.4.7)/13</td>
<td>Development Score = (5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5)/13 = 5</td>
</tr>
<tr>
<td>Standard 3 Utilization</td>
<td>Utilization Score = sum of (3.1.1 + 3.1.2 + 3.3.1 + 3.3.2 + 3.3.3+3.4.2 + 3.4.3)/7</td>
<td>Utilization Score = (5+5+5+5+5+5+5+5+5)/7 = 5</td>
</tr>
<tr>
<td>Standard 5 Evaluation</td>
<td>Evaluation Score = sum of (5.1.1 + 5.2.1 + 5.3.1)/3</td>
<td>Evaluation Score = (5+5+5)/3 = 5</td>
</tr>
</tbody>
</table>

Data:

Spring 2013

Section 301

<table>
<thead>
<tr>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>DNS</td>
<td>DNS</td>
<td>DNS</td>
<td>DNS</td>
<td>DNS</td>
</tr>
<tr>
<td>Student Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion: Candidate 1 for Spring 2013 did not exceed basic competency (sufficient ability; 3) in each of the four standards included within the rubric provided for the CIMT543 course. Candidate 1 did not fulfill the course requirements and received an incomplete for the course. No data is available to report.
Design	Development	Utilization	Management	Evaluation	Student Average
Student 1 | 4 | 4 | 4 | N/A | 4 | 4
Student 2 | 4 | 4 | 4 | N/A | 4 | 4
Student 3* | 4 | 4 | 4 | N/A | 4 | 4
Student Average | 4 | 4 | 4 | N/A | 4 | 4

Discussion: All candidates, who submitted their final artifact based on the rubric provided in assessment 7, demonstrated basic competency in all areas of the AECT standards. For instance, candidates averaged 4 on the Design standard. Candidates averaged 4 on the Development standard, 4 on the Utilization standard, and 4 on the Evaluation standard which are all above the minimum criterion of 3. This data assists the department with a close level examination of the strengths and weaknesses of the candidates. Using the criterion in the rubric provided in assessment 7, to achieve mastery level of the content, the program is exceeding minimum criterion. Candidates 1-3 (Spring 2013) demonstrated general understanding of how to apply a variety of instructional strategies into practice using the ASSURE model. Through formative evaluation, candidates were able to identify the consequent implications of specific instructional model (ASSURE model; [analyze learners, State standards and objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision], strategies (student-centered activities) tied to the rubric specific in assessment 7 to meet the standards requirements.

Candidates demonstrated competency in Standard 5 (Evaluation), through a comprehensive assessment of their final product employing an iterative process of self-reflection, questionnaires, and peer evaluation. Data (Table 7.4) suggested that scaffolding supported a wide variety of learners and prepared candidates to design instruction for diverse learners and learning environments. The final project, as a summative device included evidence of the ability of candidates to teach an instructional unit, assess, and implement the use of a wide variety of instructional media using “near transfer” of knowledge within that instructional unit.

Summer 2013

<table>
<thead>
<tr>
<th>Standard 1 Design</th>
<th>Standard 2 Development</th>
<th>Standard 3 Utilization</th>
<th>Standard 4 Management</th>
<th>Standard 5 Evaluation</th>
<th>Individual Student Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>4</td>
<td>4</td>
<td>3.6</td>
<td>N/A</td>
<td>3.3</td>
</tr>
<tr>
<td>Student 2</td>
<td>4</td>
<td>4</td>
<td>3.6</td>
<td>N/A</td>
<td>3.3</td>
</tr>
<tr>
<td>Student 3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>N/A</td>
<td>3.9</td>
</tr>
<tr>
<td>Student 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>N/A</td>
<td>4</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Student 5*</td>
<td>DNS</td>
<td>DNS</td>
<td>DNS</td>
<td>N/A</td>
<td>DNS</td>
</tr>
<tr>
<td>Student 6*</td>
<td>DNS</td>
<td>DNS</td>
<td>DNS</td>
<td>N/A</td>
<td>DNS</td>
</tr>
<tr>
<td>Student Average</td>
<td>4</td>
<td>4</td>
<td>3.7</td>
<td></td>
<td>3.6</td>
</tr>
</tbody>
</table>

Candidates* 5 & 6 did not submit

Discussion: All candidates, who submitted their final artifact based on the rubric provided in assessment 7, demonstrated basic competency in all areas of the AECT standards. For instance candidates averaged 4 on the Design standard. Candidates averaged 4 on the Development standard, 3.7 on the Utilization standard, and 3.6 on the Evaluation standard which are all above the minimum criterion of 3. This data assists the department with a close level examination of the strengths and weaknesses of the candidates. Using the criterion in the rubric provided in assessment 7, to achieve mastery level of the content, the program is exceeding minimum criterion. Candidates 1-4 (Summer I, 2013) demonstrated general understanding of how to apply a variety of instructional strategies into practice using the ASSURE model. Through formative evaluation, candidates were able to identify the consequent implications of specific instructional model (ASSURE model; [analyze learners, State standards and objectives, select strategies, technology, media and materials, required learner participation, evaluate and revision], strategies (student-centered activities) tied to the rubric specific in assessment 7 to meet the standards requirements. Candidates demonstrated competency in Standard 5 (Evaluation), through a comprehensive assessment of their final product employing an iterative process of self-reflection, questionnaires, and peer evaluation. Data (Table 7.5) suggested that scaffolding supported a wide variety of learners and prepared candidates to design instruction for diverse learners and learning environments. The final project, as a summative device included evidence of the ability of candidates to teach an instructional unit, assess, and implement the use of a wide variety of instructional media using “near transfer” of knowledge within that instructional unit.

The instructor of CIMT 543 left without leaving the data for fall 2013 or spring 2014.