Program Outcomes Assessment

MA/MS in Occupational Safety Management

Created on: 06/04/2010 09:38:00 AM CST
Last Modified: 11/11/2014 12:07:18 PM CST
Table of Contents

General Information
1

Standing Requirements
2
- Mission Statement ... 2
- Outcomes Library .. 2
- Curriculum Map ... 4
- Communication of Outcomes ... 4

Archive
6
- Archive .. 6

2009-2010 Assessment Cycle
7
- Assessment Plan .. 7
- Assessment Findings ... 7

2011-2012 Assessment Cycle
8
- Assessment Plan .. 8
- Assessment Findings ... 9
- Action Plan .. 13
- Status Report .. 14

2012-2013 Assessment Cycle
16
- Assessment Plan .. 16
- Assessment Findings ... 17
- Action Plan .. 22
- Status Report .. 24

2013-2014 Assessment Cycle
27
- Assessment Plan .. 27
- Assessment Findings ... 29
- Action Plan .. 35
- Status Report .. 37

2014-2015 Assessment Cycle
40
- Assessment Plan .. 40
- Assessment Findings ... 40
<table>
<thead>
<tr>
<th>Action Plan</th>
<th>Status Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

2015-2016 Assessment Cycle

<table>
<thead>
<tr>
<th>Assessment Plan</th>
<th>Assessment Findings</th>
<th>Action Plan</th>
<th>Status Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>

2016-2017 Assessment Cycle

<table>
<thead>
<tr>
<th>Assessment Plan</th>
<th>Assessment Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

2017-2018 Assessment Cycle

<table>
<thead>
<tr>
<th>Assessment Plan</th>
<th>Assessment Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

2018-2019 Assessment Cycle

<table>
<thead>
<tr>
<th>Assessment Plan</th>
<th>Assessment Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

2019-2020 Assessment Cycle

<table>
<thead>
<tr>
<th>Assessment Plan</th>
<th>Assessment Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>47</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
</tr>
</tbody>
</table>
General Information (Program Outcomes Assessment)
Standing Requirements

Mission Statement

The mission of the Occupational Safety Management Master of Science program is to provide safety professionals with an avenue to broaden their skills into managerial positions within the Environmental Health and Safety field through distance education.

Outcomes Library

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

1: Identify, describe, and classify common hazards
Identify, describe, and classify common hazards (workplace and general)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: Identify common hazards in the workplace and general</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Identify common hazards in the workplace and general</td>
<td></td>
</tr>
<tr>
<td>1.2: Describe common hazards in the workplace and general</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Describe common hazards in the workplace and general</td>
<td></td>
</tr>
<tr>
<td>1.3: Classify common hazards in the workplace and general</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Classify common hazards in the workplace and general</td>
<td></td>
</tr>
</tbody>
</table>

2: Assess and explain risk
Assess and explain risk and the different perceptions of risk by individuals and segments of the population

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Assess risk</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Assess risk as it pertains to occupational safety management</td>
<td></td>
</tr>
<tr>
<td>2.2: Explain individuals' perceptions of risk</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Explain individuals' perceptions of risk</td>
<td></td>
</tr>
<tr>
<td>2.3: Explains risk for different segments of the population</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Explains risk for different segments of the population</td>
<td></td>
</tr>
</tbody>
</table>

3: Prepare safety and health ed. training materials
Prepare safety and health education and training materials

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Develop content-specific safety training programs</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Develop content-specific safety training programs</td>
<td></td>
</tr>
</tbody>
</table>
3.2: Demonstrate proficiency in small group presentations
Demonstrate proficiency in small group presentations

3.3: Develop effective written presentation skills
Students will produce professional written safety training programs.

4: Safety procedures, training and engineering
Determine the proper method of managing workforce acceptance of safety procedures, training and engineering

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1: Principles of engineering/workplace hazard resolution Students will use applied engineering to resolve workplace hazards.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>4.2: Develop administrative controls for hazard resolution Students will utilize administrative controls to reduce workplace hazards.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>4.3: Select appropriate personal protective equipment Students will correctly identify appropriate PPE to protect workers when engineering or administrative controls are inadequate.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>4.4: Develop written training programs Students will develop written training programs to educate workers in the proper use of hazard controls.</td>
<td>No Mapping</td>
</tr>
</tbody>
</table>

5: Incident reporting
Select the proper collection, reporting, and summarization methods for incident reporting

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1: Select proper data collection methods Students will demonstrate knowledge of criteria for determining recordable incidents.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>5.2: Select proper paper/electronic incident reporting forms Students will demonstrate proficiency in completing OSHA 300 log and OSHA 301 Supplemental record with both paper and electronic forms.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>5.3: Select proper incident data summarization Students will demonstrate proper use of OSHA 300A Summary and incident rate calculation.</td>
<td>No Mapping</td>
</tr>
</tbody>
</table>

6: Prevent injuries and property losses
Prioritize and recommend the proper action level (design, safety device, warning device, training or PPE) and control techniques for loss exposure (engineering controls, administrative control, or PPE) to prevent injuries and property losses

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1: Prioritize hazard control Students will incorporate hazard control and management techniques into class projects.</td>
<td>No Mapping</td>
</tr>
<tr>
<td>6.2: Recommend action levels Class projects will include student recommendations for reducing or eliminating hazards that lead to injuries and property losses.</td>
<td>No Mapping</td>
</tr>
</tbody>
</table>

7: Necessary quantitative and analytical skills
Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and
decision making aspects of safety management

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1: Identify system safety and job safety analysis methods, procedure, and forms</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Develop comprehensive description of system safety engineering and safety management fundamental concepts and techniques</td>
<td></td>
</tr>
<tr>
<td>7.2: Describe statistical values and probabilities of accidents for system safety analysis</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis.</td>
<td></td>
</tr>
<tr>
<td>7.3: Describe methods of economic, financial and decision making aspects of safety management</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Demonstrate ability to proper description and application methods of economic, financial and decision making aspects of safety management.</td>
<td></td>
</tr>
</tbody>
</table>

8: Adherence to professional and ethical standards

Demonstrate adherence to professional and ethical standards, and become and advocate for the safety profession through development of standards, increasing knowledge base, and participating in the appropriate professional activities.

Based on the scientific and appropriate research methods and data analysis students are required to define research goal(s) and hypotheses, conduct literature review, collect data, conduct data analysis (statistical or others) and draw conclusion accordingly. Due to the unique nature of each project, the details are different but the overall approach is the same and students are required to present and defend their proposal and their final reports in oral and written format. The goal of this assessment is to determine if the students gain the right skills and knowledge to adhere to professional and ethical standards in order to advocate for safety profession and participate in the professional activities.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1: Demonstrate ethical methods in conducting research</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Students must successfully complete online IRB training modules and obtain committee approval of project proposals.</td>
<td></td>
</tr>
<tr>
<td>8.2: Develop effective oral and written communication skills</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Students will prepare professional project proposals and field research project reports or a thesis and orally defend the project or thesis to their committee.</td>
<td></td>
</tr>
<tr>
<td>8.3: Promote continuing educational opportunities</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Students are encouraged to join professional organizations such as ASSE, NSC, AIHA</td>
<td></td>
</tr>
<tr>
<td>8.4: Student participation</td>
<td>No Mapping</td>
</tr>
<tr>
<td>Graduate students are encouraged to participate in national and international professional conferences through technical paper submissions and presentations.</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum Map

Active Curriculum Maps

© MA/MS in Hlth&Sfty(Occ. Safety Mgmt) (See appendix)
Alignment Set: MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set
Created: 04/11/2012 8:58:32 am CST
Last Modified: 04/11/2012 9:38:42 am CST
Communication of Outcomes

Student learning outcomes are posted on the program’s web page and are distributed to the Industry Advisory Board.
Archive (This area is to be used for archiving pre-TaskStream assessment data and for current documents.)

File Attachments:

1. **Letter of Accreditation for Nursing** (See appendix)
 Letter of Accreditation for Nursing - March 2004

2. **Self-Study - February 25, 2010** (See appendix)
 Self Study for Initial Accreditation with The Association for Technology Management and Applied Engineering (ATMAE)

3. **Self-Study Report - March 2010** (See appendix)
 Accreditation Self-Study Report (Sections I-III). Responses to ATMAE Standards.
2009-2010 Assessment Cycle

Assessment Plan

Assessment Findings
2011-2012 Assessment Cycle

Assessment Plan

Outcomes and Measures

MA/MS in Hlth&Sfty(Occ. Safety Mgmnt) Outcome Set

1: Identify, describe, and classify common hazards
Identify, describe, and classify common hazards (workplace and general)

| 1.1: Identify common hazards in the workplace and general | **Measure:** Rubric on Safety inspections
Direct - Other |
| --- | --- |
| **Details/Description:** Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.
Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.
The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.
Implementation Plan (timeline): Summer 2012
Responsible Individual(s): Program Team |

| 1.2: Describe common hazards in the workplace and general | **Measure:** Rubric on Safety inspections
Direct - Other |
| --- | --- |
| **Details/Description:** Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.
Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.
The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.
Implementation Plan (timeline): Summer 2012
Responsible Individual(s): Program Team |

| 1.3: Classify common hazards in the workplace and general | **Measure:** Rubric on Safety inspections
Direct - Other |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze</td>
<td></td>
</tr>
</tbody>
</table>
jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Summer 2012

Responsible Individual(s): Program Team

6: Prevent injuries and property losses

Prioritize and recommend the proper action level (design, safety device, warning device, training or PPE) and control techniques for loss exposure (engineering controls, administrative control, or PPE) to prevent injuries and property losses.

6.1: Prioritize hazard control

Measure: Rubric on ergonomic hazards and controls

Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student. The students are supposed to select three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Spring 2012

Responsible Individual(s): OSM program team

6.2: Recommend action levels

Measure: Rubric on ergonomic hazards and controls

Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student. The students are supposed to select three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Spring 2012

Responsible Individual(s): OSM program team

Assessment Findings

Finding per Measure

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set
1: Identify, describe, and classify common hazards
Identify, describe, and classify common hazards (workplace and general)

1.1: Identify common hazards in the workplace and general
Identify common hazards in the workplace and general

Measure: Rubric on Safety inspections
Direct - Other

- **Details/Description:** Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.

- **Target:** The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

- **Implementation Plan (timeline):** Summer 2012
- **Responsible Individual(s):** Program Team

Findings for Rubric on Safety inspections

- **Summary of Findings:** 94% received 75% or higher
- **Results:** Target Achievement: Met
- **Recommendations:**
- **Reflections/Notes:**

1.2: Describe common hazards in the workplace and general
Describe common hazards in the workplace and general

Measure: Rubric on Safety inspections
Direct - Other

- **Details/Description:** Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.

- **Target:** The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

- **Implementation Plan (timeline):** Summer 2012
- **Responsible Individual(s):** Program Team

Findings for Rubric on Safety inspections

- **Summary of Findings:** 100% of students received 75% or higher
- **Results:** Target Achievement: Met
- **Recommendations:**
- **Reflections/Notes:**
1.3: Classify common hazards in the workplace and general

Classify common hazards in the workplace and general

Measure: Rubric on Safety inspections
Direct - Other

Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs and create safety inspection procedure in a workplace chosen by student. Students should analyze at least four different operations. The Goal is to develop an assessment tool to analyze jobs hazards with respect to physical, chemical, electrical, and environmental hazards and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and safety inspection procedure and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Summer 2012

Responsible Individual(s): Program Team

Findings for Rubric on Safety inspections

Summary of Findings: 94% of students received 75% or higher

Results: Target Achievement: Met

Recommendations:

Reflections/Notes:

6: Prevent injuries and property losses

Prioritize and recommend the proper action level (design, safety device, warning device, training or PPE) and control techniques for loss exposure (engineering controls, administrative control, or PPE) to prevent injuries and property losses

6.1: Prioritize hazard control

Students will incorporate hazard control and management techniques into class projects.

Measure: Rubric on ergonomic hazards and controls
Direct - Other

Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student. The students are supposed to select three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Spring 2012

Responsible Individual(s): OSM program team

Findings for Rubric on ergonomic hazards and controls

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2012, ten students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 6.1 except one student (10%) who scored 50% on the fourth item under SLO 6.1. The evidence also show that during the Spring semester of 2012, only two students (20%)
received a score of 50% on the first item under Student Learning Objective (SLO) 6.2 and the rest of the students received scores of 75% or more on every criterion under this objective. The results show that the weakest point was item one of SLO 6.2 which is "Recommendations are made about engineering controls (e.g. work design, safety devices and etc.)". One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in engineering or technical fields and their recommendations were incomplete and impractical.

The average grade for all criteria under SLO 6.1 and 6.2 were 85% or more except item one under SLO 6.2 with the average grade of 75% which is still within the target range. Hence, in conclusion, this course was successful to achieve its target as mentioned above.

Results: Target Achievement: Met

Recommendations: the instructor can prepare a short lecture/presentation about methods of hazard control and put more emphasize on engineering controls in order to help students with non-engineering/technical backgrounds achieve better results.

Reflections/Notes:

These Findings are associated with the following Actions:

Encourage students to take SFTY 631
(Action Plan; 2011-2012 Assessment Cycle)

6.2: Recommend action levels

Class projects will include student recommendations for reducing or eliminating hazards that lead to injuries and property losses.

Measure: Rubric on ergonomic hazards and controls
Direct - Other

Details/Description: Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student. The students are supposed to select three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend better methods for protection.

Target: The goal of this assessment is determine if the students gain the right skills and knowledge to conduct a job hazard analysis and recommendation based on the material taught during the semester.

The Target for this assessment was to determine if 75% of the students enrolled in this class have received a score of 75% or higher.

Implementation Plan (timeline): Spring 2012

Responsible Individual(s): OSM program team

Findings for Rubric on ergonomic hazards and controls

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2012, ten students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 6.1 except one student (10%) who scored 50% on the fourth item under SLO 6.1. The evidence also show that during the Spring semester of 2012, only two students (20%) received a score of 50% on the first item under Student Learning Objective (SLO) 6.2 and the rest of the students received scores of 75% or more on every criterion under this objective. The results show that the weakest point was item one of SLO 6.2 which is "Recommendations are made about engineering controls (e.g. work design, safety devices and etc.)". One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in engineering or technical fields and their recommendations were incomplete and impractical.

The average grade for all criteria under SLO 6.1 and 6.2 were 85% or more except item one under SLO 6.2 with the average grade of 75% which is still within the target range. Hence, in conclusion, this course was successful to achieve its target as mentioned above.

Results: Target Achievement: Met

Recommendations: the instructor can prepare a short lecture/presentation about methods of hazard control and put more emphasize on engineering controls in order to help students with non-engineering/technical backgrounds achieve better results.

Reflections/Notes:
These Findings are associated with the following Actions:
Encourage students to take SFTY 631
(Action Plan; 2011-2012 Assessment Cycle)

Overall Recommendations

No text specified

Overall Reflection

No text specified

Action Plan

Actions

MA/MS in HLth&Sfty(Occ. Safety Mgmt) Outcome Set

6: Prevent injuries and property losses
Prioritize and recommend the proper action level (design, safety device, warning device, training or PPE) and control techniques for loss exposure (engineering controls, administrative control, or PPE) to prevent injuries and property losses

6.1: Prioritize hazard control
Students will incorporate hazard control and management techniques into class projects.

Action: Encourage students to take SFTY 631

This Action is associated with the following Findings

Findings for Rubric on ergonomic hazards and controls
(Assessment Plan and Assessment Findings; 2011-2012 Assessment Cycle)

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2012, ten students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 6.1 except one student (10%) who scored 50% on the fourth item under SLO 6.1. The evidence also show that during the Spring semester of 2012, only two students (20%) received a score of 50% on the first item under Student Learning Objective (SLO) 6.2 and the rest of the students received scores of 75% or more on every criterion under this objective. The results show that the weakest point was item one of SLO 6.2 which is “Recommendations are made about engineering controls (e.g. work design, safety devices and etc.)”. One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in engineering or technical fields and their recommendations were incomplete and impractical. The average grade for all criteria under SLO 6.1 and 6.2 were 85% or more except item one under SLO 6.2 with the average grade of 75% which is still within the target range. Hence, in conclusion, this course was successful to achieve its target as mentioned above.

Action Details: The students will be encouraged to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it, although SFTY 631 is not listed as prerequisite.

Implementation Plan (timeline): this action can be implemented as early as Spring semester of 2013.

Key/Responsible Personnel: Instructor (currently Farman A. Moayed)

Measures: within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low
6.2: Recommend action levels
Class projects will include student recommendations for reducing or eliminating hazards that lead to injuries and property losses.

Action: Encourage students to take SFTY 631

This action is associated with the following findings

Findings for Rubric on ergonomic hazards and controls
(Assessment Plan and Assessment Findings; 2011-2012 Assessment Cycle)

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2012, ten students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 6.1 except one student (1%) who scored 50% on the fourth item under SLO 6.1. The evidence also show that during the Spring semester of 2012, only two students (20%) received a score of 50% on the first item under Student Learning Objective (SLO) 6.2 and the rest of the students received scores of 75% or more on every criterion under this objective. The results show that the weakest point was item one of SLO 6.2 which is “Recommendations are made about engineering controls (e.g. work design, safety devices and etc.).” One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in engineering or technical fields and their recommendations were incomplete and impractical.

The average grade for all criteria under SLO 6.1 and 6.2 were 85% or more except item one under SLO 6.2 with the average grade of 75% which is still within the target range. Hence, in conclusion, this course was successful to achieve its target as mentioned above.

Action Details: The students will be encouraged to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it, although SFTY 631 is not listed as prerequisite. OR the instructor and add a short lecture/presentation about different kinds of control methods.

Implementation Plan (timeline): this action can be implemented as early as Spring semester of 2013.

Key/Responsible Personnel: Instructor (currently Farman A. Moayed)

Measures: within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low

Status Report

Action Statuses

MA/MS in Hlth&Sfty(Occ. Safety Mgmnt) Outcome Set

6: Prevent injuries and property losses
Prioritize and recommend the proper action level (design, safety device, warning device, training or PPE) and control techniques for loss exposure (engineering controls, administrative control, or PPE) to prevent injuries and property losses

6.1: Prioritize hazard control
Students will incorporate hazard control and management techniques into class projects.

Action: Encourage students to take SFTY 631

Action Details: The students will be encouraged to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it, although SFTY 631 is not listed as prerequisite.

Implementation Plan (timeline): this action can be implemented as early as Spring semester of 2013.

Key/Responsible Personnel: Instructor (currently Farman A. Moayed)

Measures: within five years the recommendation will be added to the course catalog and followed
by all students

Resource Allocations: none
Priority: Low

Status for Encourage students to take SFTY 631

Current Status: Completed

Next Steps/Additional Information: Students are being advised to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it.

6.2: Recommend action levels

Class projects will include student recommendations for reducing or eliminating hazards that lead to injuries and property losses.

Action: Encourage students to take SFTY 631

Action Details: The students will be encouraged to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it, although SFTY 631 is not listed as prerequisite. OR the instructor and add a short lecture/presentation about different kinds of control methods.

Implementation Plan (timeline): this action can be implemented as early as Spring semester of 2013.

Key/Responsible Personnel: Instructor (currently Farman A. Moayed)

Measures: within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none
Priority: Low

Status for Encourage students to take SFTY 631

Current Status: Completed

Next Steps/Additional Information: Students are being advised to take SFTY 631 prior to registering in SFTY 606 class or concurrent with it.

Status Summary

No text specified

Summary of Next Steps

No text specified
2012-2013 Assessment Cycle

Assessment Plan

Outcomes and Measures

MA/MS in Hlth&Sfty(Occ. Safety Mgmnt) Outcome Set

7: Necessary quantitative and analytical skills

Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and decision making aspects of safety management

<table>
<thead>
<tr>
<th>7.1: Identify system safety and job safety analysis methods, procedure, and forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure: Rubric on Systems Assessment</td>
</tr>
<tr>
<td>Direct - Student Artifact</td>
</tr>
<tr>
<td>Details/Description: Data collected in 605</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline): Fall 2012 No findings—added to rubric following final projects</td>
</tr>
<tr>
<td>Responsible Individual(s): SM program coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.2: Describe statistical values and probabilities of accidents for system safety analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure: Rubric on Systems Assessment</td>
</tr>
<tr>
<td>Direct - Student Artifact</td>
</tr>
<tr>
<td>Details/Description: Data collected in 605</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline): Spring 2013 No findings—added to rubric following final projects</td>
</tr>
<tr>
<td>Responsible Individual(s): SM program coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.3: Describe methods of economic, financial and decision making aspects of safety management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure: Rubric on Systems Assessment</td>
</tr>
<tr>
<td>Direct - Student Artifact</td>
</tr>
<tr>
<td>Details/Description: Data collected in 605</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Implementation Plan (timeline): Spring 2013 No findings—added to rubric following final projects</td>
</tr>
<tr>
<td>Responsible Individual(s): SM program coordinator</td>
</tr>
</tbody>
</table>

8: Adherence to professional and ethical standards

Demonstrate adherence to professional and ethical standards, and become and advocate for the safety profession through development of standards, increasing knowledge base, and participating in the appropriate professional activities.

Based on the scientific and appropriate research methods and data analysis students are required to define research goal(s) and hypotheses, conduct literature review, collect data, conduct data analysis (statistical or others) and draw conclusion accordingly. Due to the unique nature of each project, the details are different but the overall approach is the same and students are required to present and defend their proposal and their final reports in oral and written format. The goal of this assessment is to determine if the students gain the right skills and knowledge to adhere to professional and ethical standards in order to advocate for safety profession and participate in the professional activities.
8.1: Demonstrate ethical methods in conducting research

- Measure: Successful completion of IRB training
 Direct - Student Artifact

 Details/Description: Data collected in 629/699
 Target: The Target for this assessment is 100% compliance because it is a requirement to graduate with the MS or MA degree.
 Implementation Plan (timeline): Spring 2013
 Responsible Individual(s): SM program coordinator

8.2: Develop effective oral and written communication skills

- Measure: Final Research Project or Thesis
 Direct - Student Artifact

 Details/Description: Data collected in 629/699
 Target:
 Implementation Plan (timeline): Spring 2013
 Responsible Individual(s): SM program coordinator

8.3: Promote continuing educational opportunities

- Measure: Rubric on Professional Activities
 Direct - Student Artifact

 Details/Description: Data collected in 629/699
 Target:
 Implementation Plan (timeline): Spring 2013
 Responsible Individual(s): SM program coordinator

8.4: Student participation

- Measure: Rubric on Professional Activities
 Direct - Student Artifact

 Details/Description: Data collected in 629/699
 Target:
 Implementation Plan (timeline): Spring 2013
 Responsible Individual(s): SM program coordinator

Assessment Findings

Finding per Measure

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

7: Necessary quantitative and analytical skills

- Measure: Rubric on Systems Assessment
 Direct - Student Artifact

 Details/Description: Data collected in 605

 Developing comprehensive
Target:
 Implementation Plan (timeline): Fall 2012 No findings—added to rubric following final projects
 Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2013, 18 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2013, only three students (17%) received a score of 60% on the first item under Student Learning Objective (SLO 7.1) and (SLO 7.3) the rest of the students received scores of 75% or more on every criterion under Student Learning Objective (SLO 7.2).
The results show that the weakest point was item three of SLO 7.3 - Describe methods of economic, financial and decision making aspects of safety management.
One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in application methods of economic and financial aspects of safety management.
The average grade for all criteria under SLO 7.1 and 7.2 were 85% which is still within the target range.
Conclusion: this course was successful to achieve its target as mentioned above.

Results: Target Achievement: Met

Recommendations:

Reflections/Notes:

7.2: Describe statistical values and probabilities of accidents for system safety analysis

Measure: Rubric on Systems Assessment
Direct - Student Artifact

Details/Description: Data collected in 605

Target:
 Implementation Plan (timeline): Spring 2013 No findings—added to rubric following final projects
 Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2013, 18 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2013, only three students (17%) received a score of 60% on the first item under Student Learning Objective (SLO 7.1) and (SLO 7.3) the rest of the students received scores of 75% or more on every criterion under Student Learning Objective (SLO 7.2).
The results show that the weakest point was item three of SLO 7.3 - Describe methods of economic, financial and decision making aspects of safety management.
One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in application methods of economic and financial aspects of safety management.
The average grade for all criteria under SLO 7.1 and 7.2 were 85% which is still within the target range.
Conclusion: this course was successful to achieve its target as mentioned above.

Results: Target Achievement: Met

Recommendations:

Reflections/Notes:
7.3: Describe methods of economic, financial and decision making aspects of safety management

Measure: Rubric on Systems Assessment
Direct - Student Artifact

Details/Description: Data collected in 605
Target:
Implementation Plan (timeline): Spring 2013 No findings—added to rubric following final projects
Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: according to the assessment rubric and evidence collected during the Spring semester of 2013, 18 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective.

The evidence also show that during the Spring semester of 2013, only three students (17%) received a score of 60% on the first item under Student Learning Objective (SLO 7.1) and (SLO 7.3) the rest of the students received scores of 75% or more on every criterion under Student Learning Objective (SLO 7.2).

The results show that the weakest point was item three of SLO 7.3 - Describe methods of economic, financial and decision making aspects of safety management.

One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in application methods of economic and financial aspects of safety management.

The average grade for all criteria under SLO 7.1 and 7.2 were 85% which is still within the target range.

Conclusion: this course was successful to achieve its target as mentioned above.

Results: Target Achievement: Met

Recommendations:

Reflections/Notes:

8: Adherence to professional and ethical standards

Demonstrate adherence to professional and ethical standards, and become and advocate for the safety profession through development of standards, increasing knowledge base, and participating in the appropriate professional activities.

Based on the scientific and appropriate research methods and data analysis, students are required to define research goal(s) and hypotheses, conduct literature review, collect data, conduct data analysis (statistical or others) and draw conclusion accordingly. Due to the unique nature of each project, the details are different but the overall approach is the same and students are required to present and defend their proposal and their final report in both oral and written format. The goal of this assessment is to determine if the students gain the right skills and knowledge to advocate for professional and ethical standards in order to advocate for safety profession and participate in the professional activities.

8.1: Demonstrate ethical methods in conducting research

Measure: Successful completion of IRB training
Direct - Student Artifact

Details/Description: Data collected in 629/699
Target: The Target for this assessment is 100% compliance because it is a requirement to graduate with the MS or MA degree.
Implementation Plan (timeline): Spring 2013
Responsible Individual(s): SM program coordinator

Findings for Successful completion of IRB training
Summary of Findings: At the end of the academic year, 4 of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 8.1 and one student scored 50% on all three items under SLO 8.1. Two students conducted research using secondary data not subject to IRB approval.

Results: Target Achievement: Met

Recommendations: Careful attention needs to be given to assure 100% IRB compliance. One student this year was forced to abandon data that was collected prior to IRB approval. A subsequent revised proposal and survey were approved by IRB and the student successfully completed the project.

Reflections/Notes: According to the assessment rubric and evidence collected during the 2012-2013 academic year, seven students successfully completed and defended their field research projects. Due to the nature of SFTY 629 class, it is difficult for students to successfully complete their project in one semester; therefore the following estimated scores are based on the latest status of the students and the level of their progress.

Substantiating Evidence:
![Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document) (See appendix)](Evidence - Objective 8(SFTY 629).pdf)

These Findings are associated with the following Actions:

IRB training
(Proposal Plan; 2012-2013 Assessment Cycle)

8.2: Develop effective oral and written communication skills

Measure: Final Research Project or Thesis
Direct: Student Artifact

Details/Description: Data collected in 629/699

Target:

Implementation Plan (timeline): Spring 2013

Responsible Individual(s): SM program coordinator

Findings for Final Research Project or Thesis

Summary of Findings: The evidence also show that during the 2012-2013 year, three students (43%) received a score of 100% on all four items under Student Learning Objective (SLO) 8.2 and three students received scores of at least 75% on every criterion under this objective. One student received scores of 50% on one-half of the objectives.

Results: Target Achievement: Met

Recommendations:

Reflections/Notes: Accurate assessment of this outcome is difficult at this time due to these factors:
1. Students seldom complete field research projects during the semester in which they enroll.
2. Of the seven students included in this assessment, only two were actually enrolled in SFTY 629 during one of the 2012-2013 semesters. The rest were carrying incomplete grades from prior years.

Substantiating Evidence:
![Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document) (See appendix)](Evidence - Objective 8(SFTY 629).pdf)

These Findings are associated with the following Actions:

Project defense
(Proposal Plan; 2012-2013 Assessment Cycle)

8.3: Promote continuing educational opportunities

Measure: Rubric on Professional Activities
Direct: Student Artifact

20
Students are encouraged to join professional organizations such as ASSE, NSC, AIHA

Details/Description: Data collected in 629/699
Target:
Implementation Plan (timeline): Spring 2013
Responsible Individual(s): SM program coordinator

Findings for Rubric on Professional Activities

Summary of Findings: The results show that during the 2012-2013 year, three students (43%) received a score of 75% on all items under Student Learning Objective (SLO) 8.3. All students received scores of at least 50% on all items.
Results: Target Achievement: Met

Recommendations:
Reflections/Notes: SLO 8.3 and 8.4 have not been actively promoted in the past. Graduate students will be encouraged to submit their research for conference presentations and/or peer reviewed publication with faculty as co-presenters/co-authors.

Substantiating Evidence:
Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document) (See appendix)

These Findings are associated with the following Actions:
Encourage student participation in professional organizations
(Action Plan; 2012-2013 Assessment Cycle)

8.4: Student participation
Graduate students are encouraged to participate in national and international professional conferences through technical paper submissions and presentations.

Measure: Rubric on Professional Activities
Direct - Student Artifact

Details/Description: Data collected in 629/699
Target:
Implementation Plan (timeline): Spring 2013
Responsible Individual(s): SM program coordinator

Findings for Rubric on Professional Activities

Summary of Findings: The evidence also show that during the 2012-2013 year, only one student (14%) received a score of 75% on item one under Student Learning Objective (SLO) 8.4 all seven received scores of 25% on second criterion under this objective.
Results: Target Achievement: Met

Recommendations: The instructor can encourage the students to present the results of their project in a professional conference or meeting or peer-reviewed publication.
Reflections/Notes: SLO 8.3 and 8.4 have not been actively promoted in the past. Graduate students will be encouraged to submit their research for conference presentations and/or peer reviewed publication with faculty as co-presenters/co-authors.

Substantiating Evidence:
Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document) (See appendix)

These Findings are associated with the following Actions:
Encourage student presentations at professional conferences
(Action Plan; 2012-2013 Assessment Cycle)

Overall Recommendations

No text specified

Overall Reflection

No text specified

Action Plan

Actions

MA/MS in HLth&Sfty(Occ. Safety Mgmt) Outcome Set

8: Adherence to professional and ethical standards

Demonstrate adherence to professional and ethical standards, and become and advocate for the safety profession through development of standards, increasing knowledge base, and participating in the appropriate professional activities.

Based on the scientific and appropriate research methods and data analysis students are required to define research goal(s) and hypotheses, conduct literature review, collect data, conduct data analysis (statistical or others) and draw conclusion accordingly. Due to the unique nature of each project, the details are different but the overall approach is the same and students are required to present and defend their proposal and their final reports in oral and written format. The goal of this assessment is to determine if the students gain the right skills and knowledge to adhere to professional and ethical standards in order to advocate for safety profession and participate in the professional activities.

8.1: Demonstrate ethical methods in conducting research

Students must successfully complete online IRB training modules and obtain committee approval of project proposals.

Action: IRB training

This Action is associated with the following Findings

Findings for Successful completion of IRB training

(Assessment Plan and Assessment Findings; 2012-2013 Assessment Cycle)

Summary of Findings: At the end of the academic year, 4 of the students scored 75% or more for every criterion under the Student Learning Objective (SLO) 8.1 and one student scored 50% on all three items under SLO 8.1. Two students conducted research using secondary data not subject to IRB approval.

Action Details: The students are required to take an online training course about ethical practices to conduct projects on human subjects in order to get familiar with common unethical practices as well as subjects legal rights when participating in a research project.

Implementation Plan (timeline): This action is currently in place and all students who are conducting project on human subjects are required to comply with it.

Key/Responsible Personnel: Project committee chair person and/or academic adviser

Measures: Students will receive a certificate upon successfully completing the training course and its evaluation test.

Priority: Low

8.2: Develop effective oral and written communication skills

Students will prepare professional project proposals and field

Action: Project defense

This Action is associated with the following Findings

Findings for Final Research Project or Thesis

(Assessment Plan and Assessment Findings; 2012-2013 Assessment Cycle)
8.3: Promote continuing educational opportunities

Students are encouraged to join professional organizations such as ASSE, NSC, AIHA

Action: Encourage student participation in professional organizations

This Action is associated with the following Findings

Findings for Rubric on Professional Activities
(Assessment Plan and Assessment Findings; 2012-2013 Assessment Cycle)

Summary of Findings: The results show that during the 2012-2013 year, three students (43%) received a score of 75% on all items under Student Learning Objective (SLO) 8.3. All students received scores of at least 50% on all items.

Action Details: The students are constantly encouraged to join professional societies or organizations such as American Society of Safety Engineers (ASSE), American Industrial Hygiene Association (AIHA) and similar.

Implementation Plan (timeline): This action is encouraged during advising sessions and other occasions during lectures and presentations.

Key/Responsible Personnel: Academic adviser and/or project committee chair person

Measures: Currently no measures have been adopted for this outcome.

Resource Allocations: None

Priority: Low

8.4: Student participation

Graduate students are encouraged to participate in national and international professional conferences through technical paper submissions and presentations.

Action: Encourage student presentations at professional conferences

This Action is associated with the following Findings

Findings for Rubric on Professional Activities
(Assessment Plan and Assessment Findings; 2012-2013 Assessment Cycle)

Summary of Findings: The evidence also show that during the 2012-2013 year, three students (43%) received a score of 100% on all four items under Student Learning Objective (SLO) 8.4 and three students received scores of at least 75% on every criterion under this objective. One student received scores of 50% on one-half of the objectives.

Action Details: The students are required to defend their project proposal and the final results in oral and written format.

Implementation Plan (timeline): This action is currently in place and all students who are working on their masters' field project are required to follow these steps.

Key/Responsible Personnel: Project committee chair person

Measures: The approval of the project committee is required to indicate the successful completion of this learning objective.

Resource Allocations: None

Priority: Low
Implementation Plan (timeline): This action is currently in place and all the students who are working on their masters’ project are encouraged to maintain their work at the highest quality standard with the goal of publishing and/or presenting their work in a conference.

Key/Responsible Personnel: project committee chair person

Measures: Currently no measures have been adopted for this outcome.

Resource Allocations: None

Priority: Medium

Status Report

Action Statuses

MA/MS in HLth&Sfty(Occ. Safety Mgmt) Outcome Set

8: Adherence to professional and ethical standards

Demonstrate adherence to professional and ethical standards, and become and advocate for the safety profession through development of standards, increasing knowledge base, and participating in the appropriate professional activities.

Based on the scientific and appropriate research methods and data analysis students are required to define research goal(s) and hypotheses, conduct literature review, collect data, conduct data analysis (statistical or others) and draw conclusion accordingly. Due to the unique nature of each project, the details are different but the overall approach is the same and students are required to present and defend their proposal and their final reports in oral and written format. The goal of this assessment is to determine if the students gain the right skills and knowledge to adhere to professional and ethical standards in order to advocate for safety profession and participate in the professional activities.

8.1: Demonstrate ethical methods in conducting research

Students must successfully complete online IRB training modules and obtain committee approval of project proposals.

Action: IRB training

Action Details: The students are required to take an online training course about ethical practices to conduct projects on human subjects in order to get familiar with common unethical practices as well as subjects legal rights when participating in a research project.

Implementation Plan (timeline): This action is currently in place and all students who are conducting project on human subjects are required to comply with it.

Key/Responsible Personnel: Project committee chair person and/or academic adviser

Measures: Students will receive a certificate upon successfully completing the training course and its evaluation test.

Priority: Low

Status for IRB training

Current Status: Completed

Resource Allocation(s) Status: This action is currently in place and all students who are conducting project on human subjects are required to comply with it.

Next Steps/Additional Information:
8.2: Develop effective oral and written communication skills

Students will prepare professional project proposals and field research project reports or a thesis and orally defend the project or thesis to their committee.

Action: Project defense

Action Details: The students are required to defend their project proposal and the final results in oral and written format.

Implementation Plan (timeline): This action is currently in place and all students who are working on their masters’ field project are required to follow these steps.

Key/ Responsible Personnel: Project committee chair person

Measures: The approval of the project committee is required to indicate the successful completion of this learning objective.

Resource Allocations: None

Priority: Low

8.3: Promote continuing educational opportunities

Students are encouraged to join professional organizations such as ASSE, NSC, AIHA

Action: Encourage student participation in professional organizations

Action Details: The students are constantly encouraged to join professional societies or organizations such as American Society of Safety Engineers (ASSE), American Industrial Hygiene Association (AIHA) and similar.

Implementation Plan (timeline): This action is encouraged during advising sessions and other occasions during lectures and presentations.

Key/ Responsible Personnel: Academic adviser and/or project committee chair person

Measures: Currently no measures have been adopted for this outcome.

Resource Allocations: None

Priority: Low

8.4: Student participation

Action: Encourage student presentations at professional conferences

Graduate students are encouraged to participate in national and international professional conferences through technical paper submissions and presentations.

Action Details: The students are constantly encouraged to present the results of their project in professional conferences and meetings.

Implementation Plan (timeline): This action is currently in place and all the students who are working on their masters’ project are encouraged to maintain their work at the highest quality standard with the goal of publishing and/or presenting their work in a conference.

Key/Responsible Personnel: project committee chair person

Measures: Currently no measures have been adopted for this outcome.

Resource Allocations: None

Priority: Medium

Status for Encourage student presentations at professional conferences

Current Status: Completed

Resource Allocation(s) Status: This action is currently in place and all the students who are working on their masters’ project are encouraged to maintain their work at the highest quality standard with the goal of publishing and/or presenting their work in a conference.

Next Steps/Additional Information:

Status Summary

Completed.

Summary of Next Steps

Nothing.
2013-2014 Assessment Cycle

Assessment Plan

Outcomes and Measures

MA/MS in Hlth&Sfty(Occ. Safety Mgmnt) Outcome Set

3: Prepare safety and health ed. training materials

Prepare safety and health education and training materials

3.1: Develop content-specific safety training programs

Develop content-specific safety training programs

- **Measure:** Rubric on training program
 - Direct - Other

 Details/Description: Assessed in SFTY 606
 Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

 Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

 Target: 75% of the students enrolled in this class will receive a score of 75% or higher

 Implementation Plan (timeline): Spring 2014

 Responsible Individual(s): OSM program coordinator

3.2: Demonstrate proficiency in small group presentations

Demonstrate proficiency in small group presentations

- **Measure:** Rubric on training program
 - Direct - Other

 Details/Description: Assessed in SFTY 606
 Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

 Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

 Target: 75% of the students enrolled in this class will receive a score of 75% or higher

 Implementation Plan (timeline): Spring 2014

 Responsible Individual(s): OSM program coordinator

3.3: Develop effective written presentation skills

Students will produce professional written safety training programs.

- **Measure:** Rubric on training program
 - Direct - Other

 Details/Description: Assessed in SFTY 606
 Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should
analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline): Spring 2014

Responsible Individual(s): OSM program coordinator

4: Safety procedures, training and engineering
Determine the proper method of managing workforce acceptance of safety procedures, training and engineering

4.1: Principles of engineering/workplace hazard resolution
Students will use applied engineering to resolve workplace hazards.

<table>
<thead>
<tr>
<th>Measure: Rubric on safety management program preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 616

Target:

Implementation Plan (timeline): Fall 2013

Responsible Individual(s): OSM program coordinator

4.2: Develop administrative controls for hazard resolution
Students will utilize administrative controls to reduce workplace hazards.

<table>
<thead>
<tr>
<th>Measure: Rubric on safety management program preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 616

Target:

Implementation Plan (timeline): Fall 2013

Responsible Individual(s): OSM program coordinator

4.3: Select appropriate personal protective equipment
Students will correctly identify appropriate PPE to protect workers when engineering or administrative controls are inadequate.

<table>
<thead>
<tr>
<th>Measure: Rubric on safety management program preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 616

Target:

Implementation Plan (timeline): Fall 2013

Responsible Individual(s): OSM program coordinator

4.4: Develop written training programs
Students will develop written training programs to educate workers in the proper use of hazard controls.

<table>
<thead>
<tr>
<th>Measure: Rubric on safety management program preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 616

Target:

Implementation Plan (timeline): Fall 2013

Responsible Individual(s): OSM program coordinator

7: Necessary quantitative and analytical skills
Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and decision making aspects of safety management
7.1: Identify system safety and job safety analysis methods, procedure, and forms

Measure: Rubric on Systems Assessment

Direct - Student Artifact

Details/Description: Data collected in 605
Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management in a workplace chosen by student.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):

Responsible Individual(s): SM program coordinator

7.2: Describe statistical values and probabilities of accidents for system safety analysis

Measure: Rubric on Systems Assessment

Direct - Student Artifact

Details/Description: Data collected in 605
Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):

Responsible Individual(s): SM program coordinator

7.3: Describe methods of economic, financial and decision making aspects of safety management

Measure: Rubric on Systems Assessment

Direct - Student Artifact

Details/Description: Data collected in 605
Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management in a workplace chosen by student.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):

Responsible Individual(s): SM program coordinator

Assessment Findings

Finding per Measure
MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

3: Prepare safety and health ed. training materials
Prepare safety and health education and training materials

3.1: Develop content-specific safety training programs
Develop content-specific safety training programs

<table>
<thead>
<tr>
<th>Measure:</th>
<th>Rubric on training program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 606

Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline): Spring 2014

Responsible Individual(s): OSM program coordinator

Findings for Rubric on training program

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. At the end of the semester 87.5% of students scored 75% or more for every criterion under the Student Learning Objective (SLO) 3.1 except two students (12.5%) who scored 25% on the all four items under SLO 3.1.

Results: Target Achievement: Exceeded

Recommendations:

Reflections/Notes:

Substantiating Evidence:

- Rubric for Accreditation, SFTY 606 (Word Document (Open XML)) (See appendix)

These Findings are associated with the following Actions:

Encourage students to take SFTY 616 prior to SFTY 606

(As of 2013-2014 Assessment Cycle)

3.2: Demonstrate proficiency in small group presentations
Demonstrate proficiency in small group presentations

<table>
<thead>
<tr>
<th>Measure:</th>
<th>Rubric on training program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct - Other</td>
</tr>
</tbody>
</table>

Details/Description: Assessed in SFTY 606

Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline): Spring 2014

Responsible Individual(s): OSM program coordinator
Findings for Rubric on training program

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. The evidence also show that during the Spring semester of 2014, only two students (12.5%) received a score of 25% on all four items under Student Learning Objective (SLO) 3.2 and the rest of the students (87.5%) received scores of 75% or more on every criterion under this objective.

Results: Target Achievement: Exceeded

Recommendations:

Reflections/Notes:

Substantiating Evidence:

- Rubric for Accreditation, SFTY 606 (Word Document (Open XML)) (See appendix)

These Findings are associated with the following Actions:

Students encouraged to take SFTY 616 or public speaking lessons prior to SFTY 606

(Acton Plan; 2013-2014 Assessment Cycle)

<table>
<thead>
<tr>
<th>3.3: Develop effective written presentation skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will produce professional written safety training programs.</td>
</tr>
</tbody>
</table>

Measure: Rubric on training program

Direct - Other

Details/Description: Assessed in SFTY 606

Based on the methods of analysis which has been discussed during the semester, students are supposed to create an Assessment Instrument (questionnaire) to analyze jobs in a workplace chosen by student and develop educational and training materials for employees. Students should analyze at least three different jobs to analyze their hazards with respect to their human factors and ergonomics and recommend training materials.

Goal: The Goal is to develop an assessment tool to analyze jobs hazards with respect to their human factors and ergonomics and use the outcome to develop educational and training materials based on the material taught during the semester.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline): Spring 2014

Responsible Individual(s): OSM program coordinator

Findings for Rubric on training program

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. The evidence also show that during the Spring semester of 2014, just two students (12.5%) received a score of 25% on all three items under Student Learning Objective (SLO) 3.3 and the rest of the students (87.5%) received scores of 75% or more on every criterion under this objective.

Results: Target Achievement: Exceeded

Recommendations:

Reflections/Notes:

Substantiating Evidence:

- Rubric for Accreditation, SFTY 606 (Word Document (Open XML)) (See appendix)

These Findings are associated with the following Actions:

Encourage students to take SFTY 605 prior to SFTY 606

(Acton Plan; 2013-2014 Assessment Cycle)
4: Safety procedures, training and engineering
Determine the proper method of managing workforce acceptance of safety procedures, training and engineering

4.1: Principles of engineering/workplace hazard resolution
Students will use applied engineering to resolve workplace hazards.

Measure: Rubric on safety management program preparation

<table>
<thead>
<tr>
<th>Direct</th>
<th>Other</th>
</tr>
</thead>
</table>

- **Details/Description:** Assessed in SFTY 616
- **Target:**
- Implementation Plan (timeline): Fall 2013
- Responsible Individual(s): OSM program coordinator

Findings for Rubric on safety management program preparation

No Findings Added

4.2: Develop administrative controls for hazard resolution
Students will utilize administrative controls to reduce workplace hazards.

Measure: Rubric on safety management program preparation

<table>
<thead>
<tr>
<th>Direct</th>
<th>Other</th>
</tr>
</thead>
</table>

- **Details/Description:** Assessed in SFTY 616
- **Target:**
- Implementation Plan (timeline): Fall 2013
- Responsible Individual(s): OSM program coordinator

Findings for Rubric on safety management program preparation

No Findings Added

4.3: Select appropriate personal protective equipment
Students will correctly identify appropriate PPE to protect workers when engineering or administrative controls are inadequate.

Measure: Rubric on safety management program preparation

<table>
<thead>
<tr>
<th>Direct</th>
<th>Other</th>
</tr>
</thead>
</table>

- **Details/Description:** Assessed in SFTY 616
- **Target:**
- Implementation Plan (timeline): Fall 2013
- Responsible Individual(s): OSM program coordinator

Findings for Rubric on safety management program preparation

No Findings Added

4.4: Develop written training programs
Students will develop written training programs to educate workers in the proper use of hazard controls.

Measure: Rubric on safety management program preparation

<table>
<thead>
<tr>
<th>Direct</th>
<th>Other</th>
</tr>
</thead>
</table>

- **Details/Description:** Assessed in SFTY 616
- **Target:**
- Implementation Plan (timeline): Fall 2013
- Responsible Individual(s): OSM program coordinator

Findings for Rubric on safety management program preparation
7: Necessary quantitative and analytical skills
Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and decision making aspects of safety management

7.1: Identify system safety and job safety analysis methods, procedure, and forms
Details/Description: Data collected in 605
Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management in a workplace chosen by student.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):

Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 10 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2014, only one student (10%) received a score of 60% on the first item under Student Learning Objective (SLO 7.1) The average grade for all criteria under SLO 7.1 was 90 % which is still within the target range.

Results: Target Achievement: Exceeded

Recommendations: The instructor can prepare more examples with utilizing application of statistical values and probabilities of accidents for system safety analysis.

Reflections/Notes: This course was successful to achieve its target as mentioned above.

Substantiating Evidence:
Rubric for Accreditation, SFTY 605 (Word Document (Open XML)) (See appendix)

7.2: Describe statistical values and probabilities of accidents for system safety analysis
Details/Description: Data collected in 605
Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management in a workplace chosen by student.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):
Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 10 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2014, The evidence also show that during the Spring semester of 2014, 90% of the students received scores of 75% or more on every criterion under Student Learning Objective (SLO 7.2).

Results: Target Achievement: Exceeded

Recommendations: The instructor can prepare more examples with utilizing application of statistical values and probabilities of accidents for system safety analysis.

Reflections/Notes: The results show that the weakest point was item two of SLO 7.2 - Describe statistical values and probabilities of accidents for system safety analysis. One possible reason for such outcome could be the fact that some of the graduate students in this program do not have background in application of statistical values and probabilities of accidents for system safety analysis.

Conclusion: this course was successful to achieve its target as mentioned above.

Substantiating Evidence:
- Rubric for Accreditation, SFTY 605 (Word Document (Open XML)) (See appendix)

These Findings are associated with the following Actions:

Students develop description and procedure of FTA
(Action Plan; 2013-2014 Assessment Cycle)

7.3: Describe methods of economic, financial and decision making aspects of safety management

Demonstrate ability to proper description and application methods of economic, financial and decision making aspects of safety management.

Measure: Rubric on Systems Assessment

Details/Description: Data collected in 605

Based on the methods of analysis which has been discussed during the semester, students are supposed to demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis and methods of economic, financial and decision making aspects of safety management in a workplace chosen by student.

Goal: The goal of this assessment is to determine if the students gain the necessary quantitative and analytical skills to manage a safety department regarding system safety analysis methods, procedures, and documentation and the economic, financial and decision making aspects of safety management.

Target: 75% of the students enrolled in this class will receive a score of 75% or higher

Implementation Plan (timeline):

Responsible Individual(s): SM program coordinator

Findings for Rubric on Systems Assessment

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 10 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2014, only one student (10%) received a score of 60% on the first item under Student Learning Objective (SLO 7.3). The average grade for all criteria under SLO 7.1 and 7.3 were 90% which is still within the target range. The average grade for all criteria under SLO 7.3 was 90% which is still within the target range.

Results: Target Achievement: Exceeded

Recommendations: The instructor can prepare more examples with utilizing application of statistical values and probabilities of accidents for system safety analysis.
Reflections/Notes: Conclusion: this course was successful to achieve its target as mentioned above.

Substantiating Evidence:

Rubric for Accreditation, SFTY 605 (Word Document (Open XML)) (See appendix)

Overall Recommendations

Outcome #3: The students need to receive some training or lessons about public presentation or adult education methods in order to present their training materials better. However, such lessons should be provided in other classes, perhaps in some introductory courses.

Overall Reflection

Outcome #3: The results show that the two students who received low sores on all SLOs stopped participating in class activities at some point during the semester and failed to turn in their final term project. The average grades for all criteria under all three Student Learning Objectives (SLO 3.1, 3.2 and 3.3) were 78.1% which is within the target range. Hence, in conclusion, this course was successful to achieve its target as mentioned above.

Action Plan

Actions

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

3: Prepare safety and health ed. training materials
Prepare safety and health education and training materials

3.1: Develop content-specific safety training programs
Develop content-specific safety training programs

Action: Encourage students to take SFTY 616 prior to SFTY 606

This Action is associated with the following Findings

Findings for Rubric on training program
(Assessment Plan and Assessment Findings; 2013-2014 Assessment Cycle)

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. At the end of the semester 87.5% of students scored 75% or more for every criterion under the Student Learning Objective (SLO) 3.1 except two students (12.5%) who scored 25% on the all four items under SLO 3.1.

Action Details: The students will be encouraged to take SFTY 616 prior to registering in SFTY 606 class or concurrent with it, although SFTY 616 is not listed as prerequisite.

Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.

Key/Responsible Personnel: Instructor (currently Dr. Moayed)

Measures: Within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low
3.2: Demonstrate proficiency in small group presentations

Demonstrate proficiency in small group presentations

<table>
<thead>
<tr>
<th>Action: Students encouraged to take SFTY 616 or public speaking lessons prior to SFTY 606</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Action is associated with the following Findings</td>
</tr>
<tr>
<td>Findings for Rubric on training program</td>
</tr>
<tr>
<td>(Assessment Plan and Assessment Findings; 2013-2014 Assessment Cycle)</td>
</tr>
<tr>
<td>Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. The evidence also show that during the Spring semester of 2014, only two students (12.5%) received a score of 25% on all four items under Student Learning Objective (SLO) 3.2 and the rest of the students (87.5%) received scores of 75% or more on every criterion under this objective.</td>
</tr>
<tr>
<td>Action Details: The students will be encouraged to take SFTY 616 prior to registering in SFTY 606 class or concurrent with it, although SFTY 616 is not listed as prerequisite. OR the students can be advised to take public speaking lessons or educate themselves in that field.</td>
</tr>
<tr>
<td>Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.</td>
</tr>
<tr>
<td>Key/Responsible Personnel: Instructor (currently Dr. Moayed)</td>
</tr>
<tr>
<td>Measures: Within five years the recommendation will be added to the course catalog and followed by all students</td>
</tr>
<tr>
<td>Resource Allocations: none</td>
</tr>
<tr>
<td>Priority: Low</td>
</tr>
</tbody>
</table>

3.3: Develop effective written presentation skills

Students will produce professional written safety training programs.

<table>
<thead>
<tr>
<th>Action: Encourage students to take SFTY 605 prior to SFTY 606</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Action is associated with the following Findings</td>
</tr>
<tr>
<td>Findings for Rubric on training program</td>
</tr>
<tr>
<td>(Assessment Plan and Assessment Findings; 2013-2014 Assessment Cycle)</td>
</tr>
<tr>
<td>Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 16 students enrolled in this course and 14 of them completed this course successfully. Also, according to the assessment rubric and evidence collected during the Spring semester of 2014, just two students (12.5%) received a score of 25% on all three items under Student Learning Objective (SLO) 3.3 and the rest of the students (87.5%) received scores of 75% or more on every criterion under this objective.</td>
</tr>
<tr>
<td>Action Details: The students will be encouraged to take SFTY 605 prior to registering in SFTY 606 class or concurrent with it, although SFTY 605 is not listed as prerequisite.</td>
</tr>
<tr>
<td>Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.</td>
</tr>
<tr>
<td>Key/Responsible Personnel: Instructor (currently Dr. Moayed)</td>
</tr>
<tr>
<td>Measures: Within five years the recommendation will be added to the course catalog and followed by all students</td>
</tr>
<tr>
<td>Resource Allocations: none</td>
</tr>
<tr>
<td>Priority: Low</td>
</tr>
</tbody>
</table>

7: Necessary quantitative and analytical skills
Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and decision making aspects of safety management.

7.2: Describe statistical values and probabilities of accidents for system safety analysis

Demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis.

Action: Students develop description and procedure of FTA

This Action is associated with the following Findings

Findings for Rubric on Systems Assessment

(Assessment Plan and Assessment Findings; 2013-2014 Assessment Cycle)

Summary of Findings: According to the assessment rubric and evidence collected during the Spring semester of 2014, 10 students completed this course successfully. At the end of the semester all of the students scored 75% or more for every criterion under the Student Learning Objective. The evidence also show that during the Spring semester of 2014, 90% of the students received scores of 75% or more on every criterion under Student Learning Objective (SLO 7.2).

Action Details: The students are required to:

- Develop description and procedure of application of Fault Tree Analysis (FTA) to system safety analysis

Implementation Plan (timeline): This action is currently in place and all the students required to implement.

Key/Responsible Personnel: Lecturer/Instructor

Measures: Students submitting assignments (projects and tests) receive evaluation and grade from instructor.

Resource Allocations: All resources and course documents are post on blackboard website.

Priority: High

Status Report

Action Statuses

MA/MS in Hlth&Sfty(Occ. Safety Mgmnt) Outcome Set

3: Prepare safety and health ed. training materials

Prepare safety and health education and training materials

3.1: Develop content-specific safety training programs

Develop content-specific safety training programs

Action: Encourage students to take SFTY 616 prior to SFTY 606

Action Details: The students will be encouraged to take SFTY 616 prior to registering in SFTY 606 class or concurrent with it, although SFTY 616 is not listed as prerequisite.

Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.

Key/Responsible Personnel: Instructor (currently Dr. Moayed)

Measures: Within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low

3.2: Demonstrate proficiency in small group presentations

Demonstrate proficiency in small group presentations

Status for Encourage students to take SFTY 616 prior to SFTY 606

No Status Added

Action: Students encouraged to take SFTY 616 or public speaking lessons prior to SFTY 606

Action Details: The students will be encouraged to take SFTY 616 prior to registering in SFTY 606 class or concurrent with it, although SFTY 616 is not listed as prerequisite. OR the students can be advised to take public speaking lessons or educate themselves in that field.

Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.

Key/Responsible Personnel: Instructor (currently Dr. Moayed)

Measures: Within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low

Status for Students encouraged to take SFTY 616 or public speaking lessons prior to SFTY 606

No Status Added

3.3: Develop effective written presentation skills

Students will produce professional written safety training programs.

Status for Encourage students to take SFTY 605 prior to SFTY 606

No Status Added

Action: Encourage students to take SFTY 605 prior to SFTY 606

Action Details: The students will be encouraged to take SFTY 605 prior to registering in SFTY 606 class or concurrent with it, although SFTY 605 is not listed as prerequisite.

Implementation Plan (timeline): This action can be implemented as early as the Spring semester of 2015.

Key/Responsible Personnel: Instructor (currently Dr. Moayed)

Measures: Within five years the recommendation will be added to the course catalog and followed by all students

Resource Allocations: none

Priority: Low

Status for Encourage students to take SFTY 605 prior to SFTY 606

No Status Added

7: Necessary quantitative and analytical skills

Gain the necessary quantitative and analytical skills to manage a safety department regarding the economic, financial, and decision making aspects of safety management

7.2: Describe statistical values and

Action: Students develop description and procedure of FTA
probabilities of accidents for system safety analysis

Demonstrate ability to describe and use statistical values and probabilities of accidents for system safety analysis.

Action Details: The students are required to:
- Develop description and procedure of application of Fault Tree Analysis (FTA) to system safety analysis

Implementation Plan (timeline): This action is currently in place and all the students required to implement.

Key/Responsible Personnel: Lecturer/Instructor

Measures: Students submitting assignments (projects and tests) receive evaluation and grade from instructor.

Resource Allocations: All resources and course documents are post on blackboard website.

Priority: High

Status for Students develop description and procedure of FTA

No Status Added

Status Summary

No text specified

Summary of Next Steps

No text specified
2014-2015 Assessment Cycle

Assessment Plan

Outcomes and Measures

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

2: Assess and explain risk
Assess and explain risk and the different perceptions of risk by individuals and segments of the population

2.1: Assess risk
Assess risk as it pertains to occupational safety management

- **Measure:** Rubric on risk decision
 - Direct - Other

 Details/Description: SFTY 616
 Target:
 Implementation Plan (timeline): Fall 2014
 Responsible Individual(s): OSM program coordinator

2.2: Explain individuals' perceptions of risk

- **Measure:** Rubric on risk decision
 - Direct - Other

 Details/Description: SFTY 616
 Target:
 Implementation Plan (timeline): Fall 2014
 Responsible Individual(s): OSM program coordinator

2.3: Explains risk for different segments of the population

- **Measure:** Rubric on risk decision
 - Direct - Other

 Details/Description: SFTY 616
 Target:
 Implementation Plan (timeline): Fall 2014
 Responsible Individual(s): OSM program coordinator

Assessment Findings

Finding per Measure

MA/MS in Hlth&Sfty(Occ. Safety Mgmt) Outcome Set

2: Assess and explain risk
Assess and explain risk and the different perceptions of risk by individuals and segments of the population
2.1: Assess risk
Assess risk as is pertains to occupational safety management

Measure: Rubric on risk decision
Direct - Other

Details/Description: SFTY 616
Target:
Implementation Plan (timeline): Fall 2014
Responsible Individual(s): OSM program coordinator

Findings for Rubric on risk decision

No Findings Added

2.2: Explain individuals' perceptions of risk
Explain individuals' perceptions of risk

Measure: Rubric on risk decision
Direct - Other

Details/Description: SFTY 616
Target:
Implementation Plan (timeline): Fall 2014
Responsible Individual(s): OSM program coordinator

Findings for Rubric on risk decision

No Findings Added

2.3: Explains risk for different segments of the population
Explains risk for different segments of the population

Measure: Rubric on risk decision
Direct - Other

Details/Description: SFTY 616
Target:
Implementation Plan (timeline): Fall 2014
Responsible Individual(s): OSM program coordinator

Findings for Rubric on risk decision

No Findings Added

Overall Recommendations
No text specified

Overall Reflection
No text specified

Action Plan
Status Report
2015-2016 Assessment Cycle

- Assessment Plan
- Assessment Findings
- Action Plan
- Status Report
2016-2017 Assessment Cycle

Assessment Plan

Assessment Findings
2017-2018 Assessment Cycle

Assessment Plan

Assessment Findings
2018-2019 Assessment Cycle

Assessment Plan

Assessment Findings
2019-2020 Assessment Cycle

Assessment Plan

Assessment Findings
Appendix

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>MA/MS in Hlth&Sfty(Occ. Safety Mgmt) (Curriculum Map)</td>
</tr>
<tr>
<td>B.</td>
<td>Self-Study Report- March 2010 (Word Document (Open XML))</td>
</tr>
<tr>
<td>C.</td>
<td>Letter of Accreditation for Nursing (Adobe Acrobat Document)</td>
</tr>
<tr>
<td>D.</td>
<td>Self-Study- February 25, 2010 (Word Document (Open XML))</td>
</tr>
<tr>
<td>E.</td>
<td>Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document)</td>
</tr>
<tr>
<td>F.</td>
<td>Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document)</td>
</tr>
<tr>
<td>G.</td>
<td>Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document)</td>
</tr>
<tr>
<td>H.</td>
<td>Evidence - Objective 8(SFTY 629).pdf (Adobe Acrobat Document)</td>
</tr>
<tr>
<td>I.</td>
<td>Rubric for Accreditation, SFTY 605 (Word Document (Open XML))</td>
</tr>
<tr>
<td>J.</td>
<td>Rubric for Accreditation, SFTY 605 (Word Document (Open XML))</td>
</tr>
<tr>
<td>K.</td>
<td>Rubric for Accreditation, SFTY 605 (Word Document (Open XML))</td>
</tr>
<tr>
<td>L.</td>
<td>Rubric for Accreditation, SFTY 606 (Word Document (Open XML))</td>
</tr>
<tr>
<td>M.</td>
<td>Rubric for Accreditation, SFTY 606 (Word Document (Open XML))</td>
</tr>
<tr>
<td>N.</td>
<td>Rubric for Accreditation, SFTY 606 (Word Document (Open XML))</td>
</tr>
</tbody>
</table>
Master of Science Degree in

Health and Safety

Specialization in Occupational Safety Management

Self Study for Initial Accreditation With

The Association for Technology Management and Applied Engineering (ATMAE)

February 25, 2010

This document is prepared using the new Outcomes Model for accreditation.
7.1 Program Title, Mission, and General Outcomes: The program/option title, definition and mission shall be compatible with the ATMAE definition of Industrial Technology.

Program Title

The Master’s Degree program title is Masters in Health and Safety with specialization in Occupational Safety Management.

Mission: The department, college, and institution missions shall be compatible with the approved definition of Industrial Technology.

College of Nursing, Health, and Human Services Mission Statement

The College is dedicated to fostering student excellence and developing productive citizens who function as skilled professionals. Further, we champion teaching, research, creative activities, community involvement through health initiatives, and life-long learning.

College of Nursing, Health, and Human Services Vision

The College will be recognized as a leader in providing qualified health and human service professionals who serve diverse populations through education, scholarship, innovation, service, and community engagement.

Department of Health, Safety, and Environmental Health Sciences Mission

The mission of Department of Health, Safety, and Environmental Health Sciences is to advance understanding about human health and well being through research, instruction and service.

The central concerns of Department faculty and students are to prevent unhealthy and dangerous conditions from harming people, correct these situations where they exist, and to help people adopt healthy behaviors.

Our over-reaching goals are to prevent premature death and disability and promote productive, high-quality lives.

Safety Management Mission

The mission of the Safety Management Bachelor of Science program is to provide students with technical skills necessary for careers as safety professionals in industries including construction, manufacturing, transportation, mining, and regulation.

The mission of the Occupational Safety Management Master of Science program is to provide safety professionals with an avenue to broaden their skills into managerial positions within the Environmental Health and Safety field through distance education.

Safety Management Vision

The Safety Management Bachelor of Science program will be recognized as a national leader in the preparation of students as safety professionals in industries including construction, manufacturing, transportation, and regulation.
The Occupational Safety Management Master of Science program will provide opportunities for safety professionals to pursue an advanced degree through a nationally accredited program.

General Outcomes

General outcomes shall be established for each program/option that provide a framework for the development of specific measurable competencies. Validation of the general outcomes shall be accomplished through a combination of external experts, an industrial advisory committee, and, after the program is in operation, follow-up studies of graduates.

Indiana State University’s office of Curriculum, Instruction, Research, and Teaching (CIRT) began offering workshops in the Fall 2007 semester to faculty for the purpose of initiating outcomes based evaluations. Drs. Campbell and Bermudez participated in these workshops and developed a list of stated outcomes for the program. That list of outcomes was reviewed by the program faculty and minor modifications were made, including adding one additional outcome for the Masters program. The Safety Management advisory committee was presented with the list of outcomes prior to their meeting held during the Fall 2009 semester. The committee members present voted unanimously to approve the outcomes. (See attached minutes of advisory committee meetings.)

7.2 Competency Identification and Validation

Measurable competencies shall be identified and validated for each program/option. These competencies must closely relate to the general outcomes established for the program/option and validation shall be accomplished through a combination of external experts, an industrial advisory committee and, after the program is in operation, follow-up studies of program graduates.

The best tool for evaluating the success of our program is to track success of graduates who attempt the widely accepted certification of the Board of Certified Safety Professionals. Certification requires passing a series of two examinations, the Safety Fundamentals Exam and the Comprehensive Practice Exam. Both of these exams cover four established domains:

- Domain 1—Safety, Health and Environmental Management
- Domain 2—Safety, Health and Environmental Engineering
- Domain 3—Safety, Health and Environmental Information Management and Communications
- Domain 4—Professional Conduct and Ethics

According to the BCSP Examination Guide,

“BCSP performs periodic validation studies to determine the domains, responsibilities, knowledge, and skills exhibited by safety professionals. Surveys ask practitioners to rate domains and responsibilities for importance, time spent on them in practice, and the criticality should someone fail to know them. Analyses of survey results form the primary basis for deciding on distributions of subjects on examinations. Because surveys are conducted periodically to revalidate knowledge used in practice, the distributions on the Safety Fundamentals Examination will change from time to time.”
Outcomes established for the Safety Management program, and the BCSP domains to which they closely relate, are listed below.

1. Identify, describe, and classify common hazards (workplace and general) — *Domain 1*
2. Assess and explain risk and the different perception of risk by individuals and segments of the population — *Domains 1,3,4*
3. Prepare safety and health education and training materials — *Domain 3*
4. Determine the proper method of managing workforce acceptance of safety procedures, training, and engineering — *Domain 1,2*
5. Select the proper collection, reporting, and summarization methods for incident reporting — *Domain 1*
6. Prioritize and recommend the proper action level (design, safety device, warning device, training, or PPE) and control technique for loss exposure (engineering control, administrative control, or PPE) to prevent injuries and property losses — *Domain 1,2*
7. Gain the necessary quantitative and analytical skills to manage a safety department regarding the economical, financial and decision making aspects of safety management — *Domain 1,2,3,4*
8. (Masters only) Demonstrate adherence to professional and ethical standards, and become an advocate for positive change in the Safety Profession through development of standards, increasing knowledge base and participating in the appropriate professional activities — *Domain 3,4*

Certification exam results from BCSP are detailed in Section 7.17 of this document. The identified safety management program outcomes have been developed by the faculty with assistance from and approval by the Safety Management Advisory committee.

7.4 Identification of Competency Measures

Assessment measures shall exist for each of the measurable competencies identified for the program/option.

The individual course applications for each of the identified outcomes (competencies) is available electronically and in the appendices of this document.

7.5 Program Structure and Course Sequencing
Occupational Safety Management Master’s Program Structure

Master’s Degree: Major programs/options shall be a minimum of 30 semester hours and shall meet the following minimum/maximum foundation requirements:

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>6-12</td>
<td></td>
</tr>
<tr>
<td>Communications and/or problem solving</td>
<td>6-12</td>
<td></td>
</tr>
<tr>
<td>Technical and/or Management</td>
<td>12-18</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>0-6</td>
<td></td>
</tr>
</tbody>
</table>

Students must successfully complete a minimum of 10 semester hours of graduate level coursework at the institution seeking accreditation.

The Master’s degree in Occupational Safety Management requires a minimum of 33 semester hours including the following:

- **Required courses**—all students must complete these courses
 - HLTH 601—Research Methods in Health and Safety
 - HLTH 604—Research Design and Data Analysis in Health and Safety

- **Major core courses**—must complete at least 4 major courses
 - HLTH 605—System Safety
 - HLTH 606—Ergonomics/Human Factors
 - HLTH 607—Transportation Safety
 - HLTH 608—Safety Legislation and Litigation
 - HLTH 609—Applied Communications in Health and Safety
 - HLTH 610—Safety Inspections
 - HLTH 626—Administration of Health and Safety Programs

- **Departmental Electives**—must complete 1-2 courses
 - HLTH 603—Individual Special Projects
 - HLTH 612—Epidemiology
 - HLTH 621—Topics in Health, Safety, and Environmental Health Sciences

Departmental Electives courses may also be selected from major courses beyond the 4 required.

- **Approved Non-departmental Electives**—must complete 2 courses
 - A variety of graduate level courses may approved depending on the student’s area of interest.

- **Culminating Research Experience course**
 - HLTH 629—Culminating Experience in Health and Safety (3 credits)
 - HLTH 699—Research Thesis (6 credits)

All graduate students are required to file and approved Contract of Study with the College of Graduate Studies. Any changes to the contract must be approved by the student’s advisor and the College of Graduate Studies.
Contract of Study

Department of Health, Safety, and Environmental Health Sciences

Name:

Address:

Specialization:

Student Identification No.:

Adviser:

PLEASE COMPLY WITH THE FOLLOWING GUIDELINES:

1. Adviser and student should consult and complete the schedule of study no later than the first term of enrollment in a degree program either on campus or at an extension site.

2. All courses should be listed by department and number.

3. Any change in curriculum or course on this schedule of study must be approved by the adviser and school of graduate studies. Requests for such changes must be submitted in writing to the student to the adviser for approval and forwarded to the graduate school for approval.

4. Courses more than 5 years old at the time of degree completion may not be included in the degree program.

<table>
<thead>
<tr>
<th>COURSE</th>
<th>WHEN TAKEN</th>
<th>CREDIT</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR AREA—MINIMUM 12 SEM HRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 605</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 606</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 607</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 608</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 609</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 610</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 611</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH—8 SEM HRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 600</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 601</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMULATING EXPERIENCE—3 TO 6 SEM HRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 602</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 603</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COURSES OUTSIDE MAJOR AREA—6 SEM HRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM 604</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPROVED ELECTIVES—3 TO 6 SEM HRS

- Any courses not used in the major area above or HUM 630 or 631, if not listed as electives

TOTAL HOURS

THESIS (IF APPROPRIATE)

TOPIC APPROVED DATE

THESIS APPROVED DATE

THESIS COMMITTEE

ADVISOR

DEPARTMENT CHAIR

DEGREE REQUIREMENTS

CONDITIONAL ADMISSION REQUIREMENTS

OTHER REQUIREMENTS

NUMBER OF 600 LEVEL COURSES

COPIES OF THIS SCHEDULE ARE RETAINED BY THE ADVISOR, THE STUDENT, THE DEPARTMENT CHAIR AND THE SCHOOL OF GRADUATE STUDIES.

REVISE THE GRADUATE CATALOG IN EFFECT ON DATE OF ADMISSION OR READMISSION TO A DEGREE PROGRAM OR PROGRAM REQUIREMENTS.

CONTRACT VALID ONLY WHEN SIGNED BY STUDENT, ADVISOR AND GRADUATE DEAN.

<table>
<thead>
<tr>
<th>Graduate Student</th>
<th>Graduate Advisor</th>
<th>Graduate Dean/Assistant Dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>DATE</td>
<td>DATE</td>
</tr>
</tbody>
</table>
Course Sequencing

There shall be evidence of appropriate sequencing of course work in the major to ensure that advanced level courses build upon concepts covered in beginning level course work.

Master’s program—Graduate students are encouraged to enroll in HLTH 601 Research Methods in Health and Safety, and HLTH 604 Research Design and Data Analysis during the first year of their program of study. When deficiency courses are assigned by the admissions committee, those courses are also to be completed within the first year of the program of study. Subsequent course scheduling is dependent upon availability of course offerings. Some graduate courses are offered annually; others are offered once every two years. Graduate students are required to complete six credit hours of approved elective courses from outside the Department of Health, Safety, and Environmental Health Science. Students are advised to enroll in one of the culminating research experience courses (HLTH 629 Culminating Experience in Health and Safety, or HLTH 699 Thesis) when they have completed all of their other coursework.

7.5.4 Application of Mathematics and Science

Appropriate applications of the principles of mathematics and science shall be evident in technical course work.

Science and math prerequisites for the Master’s program include two semesters of undergraduate chemistry (or equivalent) and a minimum of College Algebra and Trigonometry. Applicants may be granted conditional admission to the program with the requirement to complete those science and math courses within one year of starting the program.

Computer Applications

The major shall include instruction on computer applications and the use of computers for information retrieval and problem solving.

Students are required to prepare professional quality papers using popular computer software. Students also learn to use computer applications such as SPSS and Excel to process and evaluate data for various courses and their final research report or thesis. Additionally, students learn to access library documents and locate references using online library resources. The ISU library staff is always available to assist distance learners with locating and acquiring access to resources for assignments or research.

Communications

Oral presentations and technical report writing shall be evident in course requirements.
Oral presentations and/or research papers are a significant part of the requirements for all safety management masters program courses. Most courses in the graduate Safety Management Program require students to prepare technical reports or research papers. Many of the classes require the student to present orally reports using MS PowerPoint® to aid in the presentation.

Every effort is made to prepare the students to enter professional employment in industry, business, or government organizations able to communicate orally and in writing. Students are required to complete a course in Research Methods in Health and Safety where they prepare a written research proposal that demands strong written communication skills. One of the major courses that most students select is Communication Skills in Health and Safety where they are required to prepare a safety management training program and present the program to the class. Finally, each student is required to complete either a three credit field research project or a six credit thesis. In either case, the student is required to prepare a formal paper following university guidelines for theses and dissertations and present that paper to their three-member research committee. Theses must also be approved for format by the College of Graduate Studies.

Industrial Experiences

The major shall include appropriate industrial experiences such as industrial tours, work-study options and cooperative education, or senior seminars focusing on problem-solving activities related to industrial situations. The industrial experiences shall be designed to provide an understanding of the industrial environment and what industry expects of students upon employment.

The vast majority of our graduate students are distance learners who are employed in any of a number of industries. Students with no safety management experience that are not already employed are encouraged to complete an internship prior to completing their degree, but it is not a requirement. Assignments in various courses require students to demonstrate proficiency in management decision making as it applies to industrial safety programs. Students are encouraged to conduct their field research project in an industrial setting, where there is opportunity for industrial experience.

7.6 Student Admission and Retention Standards

University Admission Requirements from the Graduate Catalog 2009-2010

ADMISSION TO THE COLLEGE OF GRADUATE AND PROFESSIONAL STUDIES: DEGREE-SEEKING APPLICANTS

Admission to Master’s Degree Programs

Regular Admission

Regular admission status, upon the recommendation of an academic unit, may be granted to an applicant who meets the minimum admission requirements of the College of Graduate and Professional Studies. It should be noted that some academic units may have higher and/or other admission requirements. For
regular admission status in the College of Graduate and Professional Studies, an applicant must, as a minimum:

1. Hold a baccalaureate degree granted by a regionally accredited institution (for international students, a degree granted by a recognized institution).
2. Have earned a minimum cumulative grade point average of 2.7 in all undergraduate course work; or have earned a minimum cumulative grade point average of 3.0 in the last 60 hours of undergraduate course work; or have earned a minimum cumulative grade point average of 3.0 in the applicant’s major field of study; or have earned a minimum cumulative grade point average of 3.0 in all courses taken at the graduate level.
3. Where required, submit departmentally acceptable scores in the General Test of the Graduate Record Examination (GRE) or, where applicable, other appropriate standardized measures.
4. Satisfy and/or meet any and all additional admission requirements of the department/program where admission is being sought.
5. Submit to the College of Graduate and Professional Studies a fully completed Graduate Admission Application Form with a non-refundable admission application fee of $35.00 payable by cash, credit card, money order, or check made payable to Indiana State University.

Conditional Admission

Conditional admission is intended for those students whose undergraduate record does not reflect their current capacity to do graduate work. In those circumstances conditional admission status, upon the recommendation of an academic unit, may be granted. It should be noted that some academic units may have higher or other admission requirements. Conditional admission has a maximum time limit of one academic year. Applicants admitted on a conditional basis must maintain a minimum cumulative grade point average of 3.0 while enrolled in the College of Graduate and Professional Studies. A final admission decision shall be reserved by the academic unit until an applicant’s performance has been evaluated after one academic year of enrollment. For conditional admission status, an applicant must, as a minimum:

1. Hold a baccalaureate degree granted by a regionally accredited institution (for international students, a degree granted by a recognized institution).
2. Have earned a minimum cumulative grade point average of 2.3 in all undergraduate course work; or have earned a minimum cumulative grade point average of 2.5 in the last 60 credit hours of undergraduate course work; or have earned a minimum grade point average of 2.5 in the applicant’s major field of study.
3. Where required, submit departmentally acceptable scores in the General Test of the Graduate Record Examination (GRE) or, where applicable, other appropriate standardized measures.
4. Satisfy and/or meet any and all additional admission requirements of the department/program where admission is being sought.
5. Submit to the College of Graduate and Professional Studies a fully completed Graduate Admission Application Form with a non-refundable admission application fee of $35.00 payable by cash, credit card, money order, or check made payable to Indiana State University.

Provisional Admission

Provisional admission is intended for those students meeting regular or conditional admission requirements who are missing admissions materials other than an application, application fee, and an official transcript from the institution granting their highest completed degree. Provisional admission status may be granted upon the recommendation of an academic unit. Final decision on an applicant admitted on a provisional basis shall be reserved until all missing documents are received but may not exceed one semester. For provisional admission status, an applicant must, as a minimum:

1. Meet the criteria for regular or conditional admission.
2. Submit official transcripts.
3. Submit to the College of Graduate and Professional Studies a fully completed Graduate Admission Application Form with a non-refundable admission application fee of $35.00 payable by cash, credit card, money order, or check made payable to Indiana State University.

Admission of Applicants with Undergraduate Degrees from Non-Accredited Institutions to a Master's Degree Program

Conditional Admission

Applicants with undergraduate degrees from non-accredited institutions may not be granted regular admission status. However, upon the recommendation of an academic unit, conditional admission may be granted to such applicants. Conditional admission has a maximum time limit of one academic year. Under this category of admission, final admission decision by the respective academic units shall be reserved until after the evaluation of an applicant’s performance, after completion of one academic year. In order to be considered for such conditional admission status, applicants with undergraduate degrees from non-accredited institutions must, as a minimum:

1. Have earned a baccalaureate degree, which includes a general education program/courses similar to that of Indiana State University.
2. Submit official transcripts showing a minimum cumulative grade point average of 2.7 in all undergraduate course work; or submit official transcripts showing a minimum cumulative grade point average of 3.0 in the last 60 credit hours of undergraduate course work; or submit official transcripts showing a minimum grade point average of 3.0 in the applicant’s major field of study.
3. Where required, submit departmentally acceptable scores in the General Test of the Graduate Record Examination (GRE) or, where applicable, other appropriate standardized measures.
4. Complete nine to 12 credit hours of undergraduate or graduate courses prescribed by applicant’s chosen academic unit at Indiana State University, and achieve a minimum cumulative grade point average of 3.0 during the first academic year.
5. Satisfy and/or meet any and all additional admission requirements of the department/program where admission is being sought.
6. Submit to the College of Graduate and Professional Studies a fully completed Graduate Admission Application Form with a non-refundable admission application fee of $35.00 payable by cash, credit card, money order, or check made payable to Indiana State University.

It should be noted that some academic units may have higher and/or additional requirements beyond those stated above.

Provisional Admission

Provisional admission is intended for those applicants from non-accredited institutions who meet conditional admission requirements but are missing admissions materials other than an application, application fee, and official transcripts from the institution granting their highest completed degree. Provisional admission status may be granted to such applicants upon the recommendation of an academic unit. Final decision on applicants admitted on a provisional basis shall be reserved until all missing documents are received but may not exceed one semester. For provisional admission status, applicants must, as a minimum:

1. Have earned a baccalaureate degree, which includes a general education program/courses similar to that of Indiana State University.
2. Submit official transcripts showing a minimum cumulative grade point average of 2.7 in all undergraduate course work.
3. Submit to the College of Graduate and Professional Studies a fully completed Graduate Admission Application Form with a non-refundable admission application fee of $35.00 payable by cash, credit card, money order, or check made payable to Indiana State University.

CONTINUOUS ENROLLMENT/READMISSION AT ISU

Any student admitted to the College of Graduate and Professional Studies and to a department who has not enrolled and earned graduate credit for work at Indiana State University for a period of two consecutive years will have his or her admission automatically cancelled. In order to re-enroll in classes, a student whose admission has been cancelled must apply for readmission to the College of Graduate and Professional Studies and the department/program of interest. Students who are readmitted in the above manner will be governed by the policies and regulations in effect at the time of readmission.

STUDENT LOAD

A full-time course load is considered to be nine credit hours during the fall and spring semesters. During a regular semester the maximum course load, graduate courses or any combination of graduate and undergraduate courses, is 12 credit hours. In the summer terms, a student is allowed to earn no more than a total of 15 credit hours. However, upon the approval of a student’s academic advisor, the department chairperson, and the dean of the College of Graduate and Professional Studies a student may be permitted to enroll in additional hours beyond the limits indicated above. Full-time graduate assistants must maintain full-time enrollment as outlined in the Graduate Assistantship and Scholarship/Fee Waiver Award Guidelines. Except for unusual circumstances, the normal class load of 12 credit hours per semester will not be exceeded. Part-time graduate assistants must enroll in a minimum of nine credit hours each semester and one credit hour per summer session.

GRADING

A new plus/minus grading system was approved by the Faculty Senate effective fall 2009 and is reflected in the table below. Courses taken before fall 2009 will retain their old grade point values; courses taken in fall 2009 and beyond will follow the New Points column. Official transcripts will also reflect this change beginning with the fall semester of 2009. Letter grades indicating the quality of graduate course work completed and for which the credit hours earned can be applied toward graduation requirements generally can be interpreted as follows:

<table>
<thead>
<tr>
<th>Grades</th>
<th>New Points</th>
<th>Old Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.00</td>
<td>N/A</td>
</tr>
<tr>
<td>A</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
<td>N/A</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
<td>3.50</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
<td>N/A</td>
</tr>
</tbody>
</table>
An average of at least 3.0 is required to remain in the College of Graduate and Professional Studies, for admission to candidacy, and for graduation on any graduate degree program. The minimum grade point average may be increased in specific colleges and departments. (See departmental statements in this Catalog.) Grades of “DP” (passing at time of drop) and “DF” (failing at time of drop) will be assigned to courses dropped after the fourteenth calendar day of the semester through the end of the tenth week of the semester. Grades of “WP” (passing at time of withdrawal) and “WF” (failing at time of withdrawal) will be assigned to officially withdrawn courses after the tenth week of the semester. “DP,” “DF,” and “WP” grades will not be calculated in the student’s grade point average. “WF” grades will be calculated in the student’s grade point average as an “F.”

The letter grades assigned for unsatisfactory course work at the time of drop or withdrawal during summer terms are “F” (failure) and “U” (unsatisfactory), for specially approved courses.

RETENTION

A student whose grade point average drops below a 3.0 (3.25 or 3.5 in certain programs) will be placed on probation, suspended from graduate study, or dismissed from the College of Graduate and Professional Studies. The dean of the College of Graduate and Professional Studies, in accordance with the regulations of the student’s academic department and the College of Graduate and Professional Studies, will make decisions in such matters. A student who is suspended from graduate study or dismissed from the College of Graduate and Professional Studies may request a review of the case by the Graduate Student Appeals Committee of the Graduate Council.

7.7 Student Enrollment

There shall be evidence of an adequate number of program majors to sustain the program, and to operate if efficiently and effectively. Program enrollment shall be tracked and verified.

Per official university records via the office of the Associate Dean for Student Affairs of the College of Nursing, Health, and Human Services, enrollment figures for the undergraduate and graduate programs in Safety Management since 2003 are:

<table>
<thead>
<tr>
<th>SAFETY MANAGEMENT COUNTS by Semester 2003-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Spring 2003</td>
</tr>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Fall 2003</td>
</tr>
<tr>
<td>Spring 2004</td>
</tr>
<tr>
<td>Fall 2004</td>
</tr>
<tr>
<td>Spring 2005</td>
</tr>
<tr>
<td>Fall 2005</td>
</tr>
<tr>
<td>Spring 2006</td>
</tr>
<tr>
<td>Fall 2006</td>
</tr>
<tr>
<td>Spring 2007</td>
</tr>
<tr>
<td>Fall 2007</td>
</tr>
<tr>
<td>Spring 2008</td>
</tr>
<tr>
<td>Fall 2008</td>
</tr>
<tr>
<td>Spring 2009</td>
</tr>
<tr>
<td>Fall 2009</td>
</tr>
</tbody>
</table>

From 2003-2009, a total of 38 Masters degrees were awarded. The average GPA for graduate students during the same time frame was 3.81/4.00.

7.8 Administrative Support & Faculty Qualifications: There must be evidence of appropriate administrative support from the institution for the Technology, Management, and Applied Engineering program/option including appropriately qualified administrators, an adequate number of full time faculty members and budgets sufficient to support program/option goals. Full time faculty assigned to teach courses in the Technology, Management, and Applied Engineering program/option must be appropriately qualified.

Administrative support: The College of Nursing, Health, and Human Services is committed to the Safety Management Program. The College believes that the program has tremendous potential and will continue to be a leader in the Health and Safety field.

7.9 Facilities, Equipment, and Technical Support

Adequacy of Facilities and Equipment

Facilities and equipment, including the technical personnel support necessary for maintenance, shall be adequate to support program/option goals. Evidence shall be presented showing the availability of computer equipment and software programs to cover functions and applications in each program area. Facility and equipment needs shall be included in the long range goals for the program.

Relevant Classrooms, Laboratories, Libraries, and Information Infrastructures

The facilities for the Safety Management program are housed within The Health and Human Services Building located on campus. Each full-time faculty member in the School has a private
office measuring 96 sq ft. Six classrooms with seating for 45-55 students each are equipped with state-of-the art computerized audio visual support. A shared computer cluster room is available for all students (717 sq ft) There is a dedicated lab/chemical storage room (1,071 sq ft). All faculty members receive a laptop computer with optional additional screen, keyboard and mouse to prepare their teaching and research materials.

Excellent library and other computer support are also available. The library on-campus has a vast collection of applicable journals and reference books and access to numerous databases (accessible from on campus or off-campus internet connections). There are two computer rooms available in the "Health and Human Services building, one available for all students, having 20 workstations. All students are required to own a laptop computer upon their admission to Indiana State University. The University supports a Student Computing Complex, available 24 hours. (See D.5)

Relevant Equipment and Supplies

The Industrial Hygiene laboratory is equipped with a variety of modern health and safety field sampling/assessment instruments, analytical equipment, personal protective equipment and associated supplies that are accessible to students and faculty. A list of major equipment for the Industrial Hygiene courses is included in this section.

Presently the faculty offices are housed in the Department of Health, Safety, and Environmental Health Sciences. Each faculty member has a private office. The faculty shares two full-time clerical support positions. The office suite includes a conference room, department library, additional office for adjunct faculty and TAs, office supply room, filing room and duplication room.

Technical Support

Indiana State University’s office of Information Technology provides a full time computer technician for the College of Nursing, Health, and Human Services. Faculty who experience problems with their university-leased computers report the issues to the IT Help Desk. The Help Desk forwards the request to the technician in the college and she investigates the problem. The availability of a technician within the college gives faculty and students a personal solution to their information technology problems.

Support for Facilities and Equipment
Facility and equipment needs shall be reflected in the long-range goals and objectives for the program, and sources of potential funding shall be identified.

The Safety Management Program has prepared, and submitted to the Dean, the laboratory needs over the next five years. The long-term needs submitted were: (a) continual upgrading/replacement of equipment; (b) purchase of new equipment, specifically a digital oedometer (RA500) with software.

The faculty of the Safety Management program prepare an annual list of equipment and submit to the head of the department in order to (a) continually upgrade and replace the old equipment, and (b) purchase new equipment for expansion of the Industrial Hygiene laboratory.

Description of Process to Determine the Budget for the Program

Currently, budgets are delivered to the College and the Departments in late April or May. No input from Department chairs or Deans is solicited prior to the delivery of the budget sheets from the Budget Officer. There has been no increase in Supply and Expenses line items in any academic department at the University for at least the last five years.

There are budget hearings in the spring for the Deans and Vice Presidents. Up to this point, there has been no change in supplies and equipment due to budget hearings.

Adequacy of Institutional Support, Financial Resources and Constructive Leadership Necessary to Achieve Program Objectives

The institution has consistently provided some financial support for the Safety Management program. The Dean of College of Nursing, Health and Human Services has allocated a portion of the College's University equipment allocation to the unit. Furthermore, in-kind gifts from business and industry have supplemented the program’s equipment needs. Even with these bases of support, much of the laboratory equipment is outdated and represents older technology than that generally in use in industry today. Aside from industrial hygiene equipment, the program lacks resources to acquire equipment to provide experiential learning opportunities in construction, welding, electrical, mining, robotics, and manufacturing safety. Much of this equipment is available to faculty and students in the College of Technology and is a major reason that a formal request to move our programs to that college has been initiated.

Adequacy of Faculty Professional Development and How it is Planned and Funded

Operating funds in the Departments have been available for faculty members to seek professional development. Part of this is covered in the department's budget line item “travel”. Money is also available from a department’s designated account, which secures income from the Driver’s Education fees, and the Dean’s operating and designated funds. Current university
budgeting strategies to offset loss of state revenues may affect the availability of faculty development funds in the future.

Description of Plan and Sufficiency of Resources to Acquire, Maintain, and Operate Facilities and Equipment Required to Achieve Program Objectives

The Safety Management program is in need of modern industrial hygiene monitoring equipment, fall protection equipment, and other personal protective equipment. In recent years, several items have been donated by area companies, but limited department and college budgets have restricted the purchase of most new equipment requests.

Appropriateness of Equipment

Equipment shall be appropriate to reflect contemporary industry.

Department of Health, Safety and Environmental Health Sciences Laboratory Equipment

The equipment currently in use is appropriate to reflect contemporary industry.

Chromatograph

- Gas Chromatograph (FID, ECD)
- HPLC (P200 Gradient pump, UV100 detector, SP4600 Integrator)

Spectrophotometer

- UV-Vis Spectrophotometer
- Fluorescent Spectrophotometer
- Atomic Absorption Spectrophotometer
- Vis Spectrophotometer

Other equipment

- Audiometer
- Laminar Flow Hood
- HazMat Kit
- Light Meter
- Geiger Counter
- Counter Top Refrigerator
- Freezer
- Refrigerator
Analytical Balance
Microscope
Two Dell Computers
Gillian 5-pack Pump Kits
Gillian Gilabrator and Universal Pump Calibrator
Alnor Velometer
WIBGET Heat Stress Monitor
Quest Noise Dosimeter and Calibrator
Quest Sound Level Meters with Octave Filter Set
Bubble meters (home-made)
Light Meter
Draeger Pump

1- Audiometers
2- Audiometry booth
3- Quest tech noise dosimeters
4- Quest tech sound level meters
5- Gillian electric air sampling pumps with chargers and filters
6- Manual gas detecting pumps and tubes
7- Personal gas detectors (MSA Personal H2S Detector)
8- Respirable dust air sampling Cyclones
9- Gaiger Counters and the Radioactive Samples
10- Thermometers
11- Metrosonic Wet/Dry Bulb Thermometer
12- Respirator Qualitative Fit Test Kit
13- Respirator Quantitative Fit Test Kit (Portacount)
14- Fire fighting/protection educational kit and related videos
15- Gas Alert Micro 5 (5 gas detector)
16- Test Gas – Neotronics (Cylinders for calibration)
17- Analog and Digital Scales (all types and sizes)
18- Indiana Bell BioPak 60 SCBA Rexnord
19- Personal Protective Equipments (all types and sizes) – Such as ear plugs/muffs + Respirators +
Eye protections + etc
20- La Motte Water Pollution Detection Outfit
21- La Motte Air Pollution Detection Outfit
22- Kurz Flow Calibrator
23- Quest Tech Multi Log Gas Detectors
24- Indiana Bell Respirator equipment
25- Alnor Velometer
26- International Instruments Digital Manometer
27- Indiana Bell – Elsa 5 min survival kit
28- Amprob – Current Tracer
29- Narda Gaussmeter
30- Narda Microwave Survey Meter
31- Simpson Microwave Leakage tester
32- Wibget Heat Stress Monitor
33- Asbestos test kit
34- Clor-D-tect kits
35- Hood and Ventilation Demonstration Set
Program Goals

Each major program shall have current short and long-range goals and objectives and plans for achieving them.

| Long Term Goal #1 | Continuous evaluation and improvement of program curriculum.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term Goal 1</td>
<td>Incorporate optional construction and environmental health components to the program.</td>
</tr>
<tr>
<td>Objective 1</td>
<td>Partnering with the Environmental Health program within our own department, a minor in Environmental Health has been established.</td>
</tr>
<tr>
<td>Tactic</td>
<td>The first Safety Management graduates with a minor in Environmental Health graduated in May 2006. Currently there are 7 students who have declared an Environmental Health minor.</td>
</tr>
<tr>
<td>Objective 2</td>
<td>Partnering with the Department of Technology Management’s Construction Management program, a minor in Construction Management has been established.</td>
</tr>
<tr>
<td>Tactic</td>
<td>The Construction Management minor consists of 22 semester credit hours, but Safety Management majors already have 10 of those hours in their curriculum. With 4 additional courses, Safety Management majors are able to complete this minor.</td>
</tr>
<tr>
<td>Short Term Goal 2</td>
<td>Relocation of Safety Management program to the College of Technology</td>
</tr>
<tr>
<td>Objective 1</td>
<td>Submit proposal to relocate program to dean of College of Nursing, Health, and Human Services</td>
</tr>
<tr>
<td>Tactic</td>
<td>Proposal submitted as of October 2009</td>
</tr>
<tr>
<td>Objective 2</td>
<td>Participation with College of Technology restructuring plans beginning December 2009.</td>
</tr>
<tr>
<td>Tactic</td>
<td>Representatives of program faculty will participate in planning sessions.</td>
</tr>
<tr>
<td>Short Term Goal 3</td>
<td>Continued contact with and support from Safety Management Advisory groups.</td>
</tr>
<tr>
<td>Objective 1</td>
<td>At least annual face-to-face meeting with local advisory group.</td>
</tr>
<tr>
<td>Tactic</td>
<td>Continue to schedule and conduct advisory group meetings at least annually.</td>
</tr>
<tr>
<td>Short Term Goal 4</td>
<td>Improved communications with program graduates</td>
</tr>
<tr>
<td>Objective</td>
<td>Develop system for flow of information between program faculty and graduates.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Tactic</td>
<td>Development of web site for graduates to update personal contact information and to provide them with program news.</td>
</tr>
<tr>
<td>Long Term Goal #2</td>
<td>Promote and foster faculty professional development.</td>
</tr>
<tr>
<td>Short Term Goal #1</td>
<td>Each faculty member in program should pursue professional certification through Board of Certified Safety Professionals.</td>
</tr>
<tr>
<td>Objective</td>
<td>Provide financial support to faculty to enroll in CSP preparation course and to sit for certification exams.</td>
</tr>
<tr>
<td>Tactic</td>
<td>Department and college will share costs of certification exams.</td>
</tr>
<tr>
<td>Short Term Goal #2</td>
<td>Each faculty member in program will actively participate annually in national or international professional conferences, including session presentations and moderating.</td>
</tr>
<tr>
<td>Objective</td>
<td>Provide travel expenses for minimum of one national or international professional meeting per year for each program faculty member.</td>
</tr>
<tr>
<td>Tactic</td>
<td>Supplement department travel budget ($400 per faculty member annually) with foundation funds or other department resources.</td>
</tr>
<tr>
<td>Long Term Goal #3</td>
<td>Improve department funding levels for recruitment, educational tools for augmentations of classroom instruction, scholarships, and faculty professional development.</td>
</tr>
<tr>
<td>Short Term Goal 1</td>
<td>ISU is currently in the public phase of a development campaign to raise some $85 million.</td>
</tr>
<tr>
<td>Objective</td>
<td>Provide assertive effort to assist campaign at program and department levels.</td>
</tr>
<tr>
<td>Tactic</td>
<td>Request contributions from program alumni and corporate partners.</td>
</tr>
</tbody>
</table>

7.11 Program/Option Operation

Evidence shall be presented showing the adequacy of instruction including: (a) motivation and counseling of students; (b) scheduling of instruction; (c) quality of instruction; (d) observance of safety standards; (e) availability of resource materials; (f) teaching and measurement of competencies (specific measurable competencies shall be identified for each course along with the assessment measures used to determine student mastery of the competencies); (g) supervision of instruction; (h) placement services available to graduates.

The full time, tenured and tenure track faculty on the Safety Management program is responsible for the advisement, motivation and counseling of the students in the program. As soon as a student declares the Safety Management major, a faculty member from the program is assigned to him/her as an advisor. Each student is required to meet with his/her advisor at least once each semester for course scheduling, advisement and career exploration. As part of the advisement process each student must complete an anonymous advisor evaluation form (See attached Advisor evaluation form). These evaluations provide faculty with feedback about their overall quality of advisement. It is expected that each faculty use the students’ feedback to improve their advisement practices and address any student concerns.

It is the responsibility of the faculty to monitor instruction, along with the program coordinator and department chairperson. The faculty approved (1991) an evaluation document that identifies procedures for evaluating teaching effectiveness. The department follows the guidelines in the Evaluation Methods and Documentation of Teaching Effectiveness as approved by the Faculty Senate. Full-time tenured and tenure-track professors teach all the courses within the Safety
Management Program. Graduate students are not assigned to teach classes. The schedule of instruction is established each semester by the department chairperson.

Each professor is responsible for the organization and content presentation necessary to meet the objectives and goals for the particular courses in the curriculum for which they have been assigned. The Program’s faculty is experienced, full-time faculty. It is assumed, their organization and scheduling of instruction does allow adequate time for completion of appropriate homework assignments and laboratory problem-solving activities.

Schedules are developed with consideration of program and students’ needs. Every possible effort is made to meet the program requirements and the published sequence of courses required for students to complete the program in four years. Quality of instruction is evaluated by the chairperson, faculty members on the Department’s Faculty Affairs Committee (FAC), and by the students. Every year each tenure-track faculty is evaluated on their teaching performance by the chairperson and one or two members of the FAC (see attached Teaching Evaluation form). In addition, every faculty member is required to administer the Student Instructional Report II (SIRs) (see attached SIRs) for each course at the end of each semester. Students have the opportunity to give anonymous feedback about the quality of instruction to their professor. In addition, the Promotion-Tenure (PT) document from the Department of Health, Safety and Environmental Health Sciences as well as the PT document for the College of Nursing, Health and Human Services recommend that each faculty do a self evaluation of their teaching and quality of instruction.

Resources for teaching, equipment and laboratory needs are distributed by the Dean of the College each year according to each department’s request. Access to teaching resources are easy available in the department, including personal computers, printing materials, scanning and photocopy equipment. Each classroom is equipped with computer systems which include projectors and DVD players. Recently the Department provided each faculty with an external hard drive backup system, and access to portable/removable power point controls. To supplement the cost of laboratory equipment the university approved a laboratory fee of $25.00 per student registered in the laboratory classes.

The faculty of the Safety Management Program is responsible for collecting evidence that demonstrates the student mastery of specific program learning outcomes. The faculty had identified seven major learning outcomes for the Safety Management Program. In addition, each learning outcome had been associated with each required course in the program to indicate whether the outcome is intended to be met at a basic (B), intermediate (I), or advanced (A) level (see attached Learning Outcomes). Each course has specific learning objectives listed on its syllabus. The faculty, through different teaching and evaluation strategies such as paper, oral presentations, group work-discussions, exams, assignments and quizzes, determines student mastery of the competencies and assigns the final grade.

The Safety Management Program requires an Internship or Practicum Experience for each student. The Internship prepares the students for employment upon graduation. The internship placement is set up in such a way that it serves as a practice to apply for jobs upon graduation. The majority of the students use the Internship experience as their starting point for job placement. Students are encouraged to participate in every career fair that the university organizes. Faculty members advise and circulate employment opportunities to students. In addition, the ISU Career Center provides a great service to the students in terms of resume preparation, practice interviews and employment opportunities.

7.12 Graduate Satisfaction with Program/Option
Graduate evaluations of the program/option shall be made on a regular basis (every two to five years). These evaluations shall include attitudes related to the importance of general outcomes and specific competencies identified for the program/option. Summary data shall be available for graduate evaluations of the program/option.

Due to the short time available to complete this self study of the masters program, no alumni survey has been conducted for this program. In October 2009, the safety management advisory committee voted unanimously to adopt the seven stated learning outcomes from the undergraduate program and add one additional outcome for the masters program. The masters program state learning outcomes are:

Upon completion of the Master of Science degree in Health and Safety with Occupational Safety Management specialization, the graduate should be able to:

1. Identify, describe, and classify common hazards (workplace and general).
2. Assess and explain risk and the different perception of risk by individuals and segments of the population.
3. Prepare safety and health education and training materials.
4. Determine the proper method of managing workforce acceptance of safety procedures, training, and engineering.
5. Select the proper collection, reporting, and summarization methods for incident reporting.
6. Prioritize and recommend the proper action level (design, safety device, warning device, training, or PPE) and control technique for loss exposure (engineering control, administrative control, PPE) to prevent injuries and property losses.
7. Gain the necessary quantitative and analytical skills to manage a safety department regarding the economical, financial, and decision making aspects of safety management.
8. Demonstrate adherence to professional and ethical standards, and become an advocate for positive change in the Safety Profession through development of standards, increasing knowledge base and participating in the appropriate professional activities.

7.13 Employment of Graduates

Placement, job titles, and salaries of graduates shall be tracked on a regular basis (two to five years). The jobs held by graduates shall be consistent with program/option goals. Summary data shall be available for the employment of graduates.

The only survey conducted for this accreditation cycle was for alumni of the undergraduate program, but two of the respondents have also completed their masters degrees. Results of that survey included the following:

Based on results of the survey of graduates, 14 of the 17 respondents were currently employed within the safety industry and the following job titles were obtained: director, manager, associate, representative, others. Industries in which graduates reported employment included construction, manufacturing, consulting, general business, and education. Primary job responsibilities included industrial hygiene (29%), risk management (35%), construction safety (64.7%), emergency management/preparedness (29.4%), accident/incident investigation (52.9%), hazardous materials (23.5%), environmental regulations (11.8%), general
OSHA (52.9%), Safety Training/education (64.7%), seccurity (5.9%). The survey allowed respondents to select multiple answers for primary responsibilities. Most alumni listed secondary work responsibilities as well. Respondents were asked to report a salary range for their current position. Those results were:

- <$40,000: 1
- $40,001-55,000: 8
- $55,001-70,000: 2
- $70,001-100,000: 2
- >$100,000: 1
- Missing: 3

These reported salaries are for graduates with less than six years experience.

7.14 Job advancement of Graduates

The advancement of graduates within organizations shall be tracked on a regular basis (two to five years) to ensure promotion to positions of increasing responsibility. Summary data shall be available for the job advancement of graduates.

Due to lack of data, it is not possible to make a conclusive statement about the job advancement of safety management masters program alumni. Individual alumni have reported advancement into management positions within many of their companies including manufacturing, construction, and consulting organizations. A future survey of graduates will include questions concerning job advancement as a result of their degree completion.

7.15 Employer Satisfaction with Job Performance

Employer satisfaction with the job performance of graduates shall be tracked on a regular basis (two to five years) including employer attitudes related to the importance of the specific competencies identified in the program. Summary data shall be available showing employer satisfaction with the job performance of graduates.

The majority of the students enrolled in our graduate program are currently employed and are part time students. Most are receiving at least partial financial support from their employers to complete an advanced degree. Due in part of the short time frame for completing a self study of the masters program, no survey of employers has been conducted at this time. It is expected that within the next two years a comprehensive survey of employers of the masters program alumni will be completed. Several of the members of the safety management advisory committee are alumni of the the masters program.

7.16 Graduate Success in Advanced Program

If a goal of the program/option is to prepare students for advanced studies, then the success in the advanced study programs shall be tracked and confirmed. Summary data shall be available showing success in advanced programs.
While not stated as one of our outcomes, we do encourage many of our undergraduate majors to pursue advanced degrees. According to university records, since 2003, 18 B.S. program graduates have entered into our masters program and since 2003 a total of 11 undergraduate alumni have earned their masters degrees in our graduate program. We currently have no record of B.S. program graduates pursuing advanced degrees from other institutions. We also have no record of masters program alumni since 2004 pursuing terminal doctoral degrees from any institution.

7.17 Student Success in Passing Certification Exams

The following letter was sent from the Board of Certified Safety Professionals concerning data from program graduates who have attempted the Associate Safety Practitioner (ASP) exam and the Certified Safety Professional (CSP) exam. The BCSP did not differentiate between BS and MS degrees in this letter.

Dear Dr. Blyukher,

BCSP is excited to hear about the pursuance of re-accreditation for the Safety Management Program at ISU and is looking forward to working with you to provide students with the opportunity towards CSP certification through the Graduate Safety Practitioner (GSP) Program path once ABET accreditation has been achieved.

As I mentioned in my voice mail, BCSP is currently in the process of updating our database management system and transferring information from our legacy system. The problem with gathering a true reflection of the number of graduates lies in the fact that there have been multiple methods used for entering data which has changed over time. In early cases, the specific university information was not captured in the database and since has been entered in different formats so there are inconsistencies and missing data that is only available by pulling hard copy files. However, below is the information I was able to gather, albeit not the complete picture.

The numbers below are based on a graduation year of 2000 or later.

- 19 graduates have achieved the ASP designation
- 12 graduates have achieved the CSP certification
- 9 candidates are currently eligible to sit for Safety Fundamentals (2 of which have sat for the exam previously and did not pass)
- 5 are no longer eligible due to not passing the examination within eligibility time limits

I hope this helps. Please let me know if I can be of further assistance.
Since receiving this letter, one additional graduate has passed the ASP exam.

7.18 Advisory Council Approval of Overall Program

The Safety Management advisory board consists of professionals from a variety of industries that meet at least once per academic year, usually during the spring semester, to review the current curriculum and proposed modifications. In general, board terms are three years, and renewable. In some instances, members may not complete a three year term and are replaced. The current board members include:

- Larry Meddles—Gartland Foundry
- Mike Howard—Rose Hulman Institute of Technology
- Bill Oliver—AET, Inc.
- Paul Woerz—Alcoa
- Larry Newport—Keramida
- Ted Buck—Bell South
- Kelly Lemons—TBM Building Services
- Phil Hatfield—Safety Management Group

Minutes of the most recent meeting follow. Minutes of previous meetings may be found in appendices.

Minutes

The Safety Management Advisory Group

October 5, 2009

Present: Larry Meddles, chair, Mike Howard, Kelly Coy, Larry Newport, Bill Oliver, Yasenka Peterson, Bill Campbell, Farman Moayed, Ernie Sheldon, Shiaw-fen Ferng, Eliezer Bermudez, Boris Blyukher.

Meeting was called to order by Chairman Larry Meddles at 3:30 pm. Dr. Moayed moved to approve minutes of April 9, 2009 meeting. Dr. Ferng seconded and motion passed unanimously. Bill Oliver moved that the faculty move forward with re-accreditation of the undergraduate program and initial accreditation of the graduate program through the Association for Technology Management and Applied Engineering (ATMAE). Mike Howard seconded and the motion passed unanimously. The process is being led by Dr. Brad Lawson in the College of Technology. Dr. Lawson is a charter member of ATMAE (formerly NAIT) and very experienced in accreditation procedures. A timeline for completion of the
accreditation self studies was discussed and the faculty noted that their target date for completion is mid December, although Dr. Lawson’s target date is late January. The accreditation team visit will occur in late March or early April 2010.

Drs. Blyukher, Sheldon, Campbell, and Moayed met with Dean Sims, Associate Dean McNabb, and all three department chairs from the College of Technology on October 2 to explore the fit of the Safety Management programs within that college. A tour of the COT facilities will be given to our faculty in the near future.

Mike Howard suggested that the curriculum in the program might need to include more focus on security and biosafety. Larry Meddles noted that process safety management is not currently included in our curriculum.

Meeting was adjourned at 4:15 pm.

7.19 Outcome Measures Used to Improve Program

Evidence shall be presented showing how multiple outcome measures (Graduate Satisfaction with Program/Option, Employment of Graduates, Job Advancement of Graduates, Employer Satisfaction with Job Performance, Graduate Success in Advanced Programs, Student Success in Passing Certification Exams, and Advisory Committee Approval of Program) have been used to improve the overall program/option. Evidence that program stakeholders participate in this process must be demonstrated.

Whether an organization specializes in business, entertainment, or education, without constantly striving to improve itself, it will quickly lose its edge. The Safety Management programs at Indiana State University have evolved over many years to continue to provide the industries our graduates serve with knowledgeable personnel who understand workplace hazards, workers’ behavior, and the economic consequences of injuries and occupational diseases to employers, family, and society. To maintain the reputation of a well-respected program we have utilized a variety of evaluative methods including regular meetings of our industrial advisory board, student and peer teaching evaluations, and employer feedback. Beginning two years ago we developed a list of outcome measures that we are now using to assess the effectiveness of our programs. These outcomes measures were initially written by two faculty members attending a university workshop to prepare for North Central accreditation. The decision to apply for ATMAE reaccreditation for our undergraduate program using the outcomes assessment model was based on compatibility with the university’s requirements for the North Central process. When we learned that ATMAE was now accrediting masters programs using this model we decided to apply for an initial accreditation for our masters program as well.

Both our bachelors and masters program were at one time accredited with the American Society of Safety Engineers (ASSE), but those accreditations expired in 1997 after ASSE turned over its accredited programs to ABET. At that time, our programs would have required dramatic curricular changes to meet the criteria for ABET. In 2003, two of our faculty attended a NAIT accreditation workshop and it was determined that our programs fit well within the structure of NAIT. Since several programs in the College of Technology (COT) were due for reaccreditation in 2004, we were invited by COT to complete a self study and submit with their own programs for the visiting team to review that year. Upon completion of a two year follow up report, our undergraduate program was granted full accreditation. Since that time the college structure at ISU has changed. The former College of Health and Human Performance, where our program had originated, was merged with the College of Nursing to form the largest professional college on campus. We currently have filed a formal request to our dean to move the safety management
programs into COT, a move we are certain would benefit our students by providing more experiential learning opportunities in their available laboratories. At this time we are awaiting his decision on our request.

The Safety Management advisory board consists of professionals from a variety of industries that meet at least once per academic year to review the current curriculum and proposed modifications. During 2009 the advisory board met twice, April 9 and October 5. The board, in conjunction with the faculty members, discussed suggested changes to various courses in the Safety Management Program following review of syllabi for the courses. These courses are: HLTH 212 – Introduction to occupational health and safety; HLTH 314 – Industrial health and safety legislation; HLTH 427 – Applied physics for health sciences; HLTH 416 – Administration of industrial health and safety programs; and HLTH 423 – Current issues and training concepts in industrial health and safety. Some of the board members’ suggestions and recommendations included the covering of Hazardous Materials chapter in HLTH 212, taking the Applied physics and math courses at the start of the Safety Program, and the creation of a new course that combines HLTH 416 and HLTH 423.

Members of the advisory board have also been instrumental in facilitating internship sites for the students in the Safety Management program. In addition, the advisory board reviewed the student Learning Outcomes for the Safety Management Program. The board suggested that a learning outcome that addresses health and safety codes in the workplace should be added. They also recommended the creation of learning outcomes for the Master’s program in Occupational Health and Safety.

Evidence to show the multiple outcomes measures has been presented in several of the preceding standards. In addition, the following items are included in the appendices of this document:

- Degree Audit Reporting System (DARS) sample forms for a student early in the program and for a candidate for graduation
- Student Instructional Report II (SIRII) individual blank form and instructor’s summary
- Complete survey data
- Completed internship employer evaluation
- Advisor evaluation form
- Peer teaching evaluation form

Each of these evaluation tools is used by the faculty to continuously modify course goals, topics, and presentation techniques. Since our last accreditation cycle, overhead computer projection systems have been installed in every classroom used by our program. Graduate distance education courses have from satellite television courses with two way audio available only within the state boundaries of Indiana to interactive computer-based presentations viewable live from anywhere in the world. This change has resulted in graduate student applications from all across the country and a broad diversity of our graduate student demographics. As technology continues to advance, faculty will migrate toward new and creative methods of delivery including podcasts and two-way video presentations.

The Safety Management programs at Indiana State University have enjoyed a successful history and will continue to thrive and improve by adapting to the changing demands of our students and employers within the safety industry.
INDIANA STATE UNIVERSITY
COLLEGE OF TECHNOLOGY

ACCREDITATION SELF-STUDY REPORT

March 2010
SECTION I
Requests for Re-Accrreditation and Accreditation

SECTION II
General Information

SECTION III
Responses to ATMAE Standards From:

- Advanced Manufacturing Management, BS
- Automotive Technology Management, BS
- Computer Engineering Technology, BS
- Electronics Technology, BS
- Packaging, BS
- Safety Management, BS
- Technology Management, BS
- Health & Safety (Occupational Safety Management), MS

March 2010
TABLE OF CONTENTS

Section I The On-Site Visit

A. Date of the Visit	2
B. Visiting Team Members	2
C. Proposed On-Site Agenda	3
D. Current Accreditation Status of Programs	5

Section II General Information

A. The Institution	7
1. Name and Address	7
2. Number of Students Enrolled	9
a. Total	
b. Full-time	
c. Part-time	
d. Full-time equivalent	
3. Total Full-Time Equivalent Faculty	
Student Enrollment Summary	10
4. Operating Budget	18
a. Current	19
b. Five-Year History	21
5. Institutional Accreditation Organizations and Dates of Accreditation	24
6. History of Accreditation by the Association of Technology, Management, and Applied Engineering	28
7. Administration of the Institution	31
a. Head	32
b. Chief Academic Officer	32
8. Major Academic Units Within the Institution	32
9. Institutional Mission and Value Statements	32
10. Relationship of Institution to Superior Governing Body

B. Administrative Units Information

1. Name and Address of Administrative Units
2. Names of Deans and Department Heads
3. Names of Other Departments in Administrative Units
4. Names of Program Heads
5. Names and Titles of Others with Program Administration and/or Coordination Responsibility
6. Titles of Degrees, Programs, and Concentrations for which Accreditation is Being Requested

Appendices

Admissions
COT Retention & Graduation Rates
Career Center
Internships
Computing Resources
COT Degrees Awarded
COT GPA
COT Faculty List
COT Faculty Salaries
COT Graduate Faculty
COT Faculty Demographics
Faculty Positions
COT Faculty Rank History
COT Faculty Retirement Projections
Library
COT Student Organizations
Surveys
Section III Major Programs – Compliance with Standards

Automotive Technology Management, BS
Computer Engineering Technology, BS
Electronics Technology, BS
Advanced Manufacturing Management, BS
Packaging, BS
Technology Management, BS
Safety Management, BS
Health & Safety (Occupational Safety Management), MS
The Association of Technology, Management, and Applied Engineering

Request for Initial Accreditation or Reaccreditation Visit
Please Type Information

1. Institution
 Indiana State University
 Terre Haute, IN 47809

2. Head of Institution
 Dr. Daniel Bradley
 Title: President
 Telephone: 812-237-4000
 Fax: 812-237-7948

3. Head of Program
 Dr. Bradford Sims
 Title: Dean
 Telephone: 812-237-3166
 Fax: 812-237-3733

4. Contact Person
 Dr. Jeffrey McNabb
 Title: Assoc. Dean
 Mailing Address: ISU College of Technology, Terre Haute, IN 47809
 Telephone: 812-237-2987
 Fax: 812-237-2823
 Email Address: jmcnabb@indstate.edu

5. Type of Visit Requested:
 [] Initial Accreditation [x] Reaccreditation [] 2-Year Follow-Up

6. Program Level:
 [x] Associate [x] Baccalaureate [] Master

7. List Industrial Technology Program(s) (including options, concentrations, and specializations) to be considered (Note: All options, specializations, and concentrations in a degree program MUST be reviewed. Reference standards 5.3.3 and 6.3.3).

 Degree: Program Name: Option, Concentration, or Specialization

 SEE ATTACHED SHEET

 (Attach additional sheet if necessary)

8. Billing Address:
 Dean, College of Technology, Indiana State University
 Terre Haute, IN 47809

10. Proposed Dates for Visit (Note: a minimum of two full days are required for the visit plus a travel day).
 First Choice: March 28, 29, 30, 2010 Second Choice: April 4, 5, 6, 2010

11. Recommended Team Member Lodging (include name, address, and telephone number).
 Hilton Garden Inn. 750 Wabash Ave.
 Terre Haute, IN 47807 812-234-8900

12. Authorized Signatures:
 Head of Institution: Date: 7/20/09
 Head of Program: (Interim Dean) Date: 7/21/08
 Institution Contact Person: Date: 7/21/09

Mail this form to: Executive Director, The Association of Technology, Management, and Applied Engineering, 3300 Washenaw Avenue, Suite 220, Ann Arbor, MI 48104-4200. Telephone 734-677-0720. Fax 734-677-0046. Email atmae@atmae.org

G:\UCDATA\UCNaIT\Accreditation\Forms&Certificates\wordaccreditationrequest.doc
2009
Indiana State University
College of Technology
Programs Requesting Reaccreditation

Programs from the Electronics, Computer, and Mechanical Engineering Technology Department

- Automotive Technology Management, B.S.
- Electronics and Computer Technology, A.S.
- Electronics Technology, B.S.

Programs from the Technology Management Department

- Advanced Manufacturing Management, B.S. (previously Manufacturing Technology)
- Packaging, B.S.
- Technology Management, B.S. (previously Industrial Technology)
November 24, 2009

Rick Coscarelli, Executive Director
The Association of Technology Management and Applied Engineering
3300 Washtenaw Ave., Suite 220
Ann Arbor, MI 48104-4200

Dear Dr. Coscarelli:

As we have discussed over the phone, Indiana State University would like to make some changes in our list of programs to be accredited by ATMAE in 2010. (Our original request is attached.) Below is our altered request.

Programs from the Electronics, Computer, and Mechanical Engineering Technology Department, College of Technology

- Automotive Technology Management, B.S.
- Electronics Technology, B.S.

Programs from the Technology Management Department, College of Technology

- Advanced Manufacturing Management, B.S. (previously Manufacturing Technology)
- Packaging, B.S.
- Technology Management, B.S. (previously Industrial Technology)

Programs from the Safety Management Department of the College of Nursing, Health, and Human Services

- Safety Management, B.S.
- Health and Safety (Occupational Safety Management), M.S.

Yours truly,

[Signature]

Dr. Jeffrey McNabb, Associate Dean
College of Technology,
Indiana State University
December 9, 2009

Rick Coscarelli, Executive Director
The Association of Technology Management and Applied Engineering
3300 Washtenaw Ave., Suite 220
Ann Arbor, MI 48104-4200

Dear Dr. Coscarelli:

Indiana State University would like to make some changes in our list of programs to be accredited by ATMAE in 2010.

We request that the six programs in the Electronics, Computer, and Mechanical Engineering Technology Department and in the Technology Management Department be evaluated using the traditional standard model.

Programs from the Electronics, Computer, and Mechanical Engineering Technology Department, College of Technology

- Automotive Technology Management, B.S.
- Computer Engineering Technology, B.S.*
- Electronics Technology, B.S.

* We would like to include Computer Engineering Technology although it is also seeking TAC-ABET accreditation. Formerly known as Computer Hardware Technology, this program has had only minor revisions to its curriculum, and we therefore are asking for its reaccreditation rather than an initial accreditation.

Programs from the Technology Management Department, College of Technology

- Advanced Manufacturing Management, B.S. (previously Manufacturing Technology)
- Packaging, B.S.
- Technology Management, B.S. (previously Industrial Technology)

We would like the two programs below to be evaluated using the outcomes assessment model.
Programs from the Safety Management Department of the College of Nursing, Health, and Human Services

- Safety Management, B.S.
- Health and Safety (Occupational Safety Management), M.S.

If, due to these changes, it is deemed necessary to add another accrediting team member, we will understand and cover the additional cost.

Yours truly,

Jeffrey McNabb
Dr. Jeffrey McNabb, Associate Dean
College of Technology,
Indiana State University

JGM/re
Thanks Rick,

Everything you have mentioned looks right. Jeff

Jeff and Malcolm,

Thanks for the update on your Programs/Options and that of the Safety Management Department.

I have made the necessary changes to our database to reflect the Master Program in Health and Safety as an Initial Accreditation and have revived the "Computer Hardware Technology" Program which will now be renamed "Computer Engineering Technology" and considered a reaccreditation.

Sid will be working on setting up the Team. It will have a fourth Team member to handle the Master program and the Safety Management Program. You institution will be billed for the additional member per our policy:

Accreditation Visits - Fee for Extra Team Members / Extra Days on Campus:

Fee: Based on a proportionate share of actual expenses.

Fee Calculation: If the Accreditation Personnel Committee determines that more than three team members are required for any visit, or that more than three (3) on-campus days are required for the visit, or if a follow-up on-site visit is required, then the institution will be billed for actual travel costs for the extra team member(s) or additional visit days, or for the follow-up visit. "Actual travel costs" for each extra team member will be determined by dividing the total travel costs by the number of team members. Actual travel costs for each additional visit day will be determined by dividing the total travel costs by the number of on-campus days required for the visit.

Billing: The fee for extra team members / extra days on campus will be billed immediately upon calculation of all direct expenses related to the visit.

Due: The invoice for the Extra Team members / Extra Days on Campus Fee is due and payable 30 days after receipt.

(See 2009 Accreditation Handbook 3.6.3)

Also Jeff, per your request, your Programs will be evaluated using the Traditional 2009 Standards and Malcolm's Programs, both B.S. and M.S. will be using the Outcomes Assessment Model.

Let me know if you see anything that needs changing or update.

Thanks.

Rick
This e-mail, including attachments, may include confidential and/or proprietary information, and may be used only by the person or entity to which it is addressed. If the reader of this e-mail is not the intended recipient or his or her authorized agent, the reader is hereby notified that any dissemination, distribution or copying of this e-mail is prohibited. If you have received this e-mail in error, please notify the sender.
Jeff,

Indiana State University
Initial and Reaccreditation Visit - March 28-30, 2010

Attached is the "Notification of Team Assignments and Visitation Dates" form for you to sign and get back to me ASAP.

Also, please find out who the contact person should be for Safety. I would like to make sure my records are correct. I understand that you will be the point person for our Team and coordinate activities with the Safety Department, thanks.

You will not receive any hard copy of this notification.

Thanks.

Rick

Rick Coscarelli
Executive Director, ATMAE formally NAIT
3300 Washtenaw Ave., Suite 220
Ann Arbor, MI 48104
734-677-0720 voice
734-677-0046 fax
rcoscarelli@nait.org

This e-mail, including attachments, may include confidential and/or proprietary information, and may be used only by the person or entity to which it is addressed. If the reader of this e-mail is not the intended recipient or his or her authorized agent, the reader is hereby notified that any dissemination, distribution or copying of this e-mail is prohibited. If you have received this e-mail in error, please notify the sender.
The Association of Technology, Management, and Applied Engineering
Notification of Team Assignments and Visitation Dates

A. General Information:

<table>
<thead>
<tr>
<th>Initial Accreditation</th>
<th>Associate Level</th>
<th>X</th>
<th>Master Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaccreditation</td>
<td>X Baccalaureate Level</td>
<td>Visit (follow-up)</td>
<td></td>
</tr>
</tbody>
</table>

Contact Person:	Dr. Jeff McNabb, Associate Dean IT
Institution:	Indiana State University
Address 1:	ISU, College of Technology
City, State, & Zip Code:	Terre Haute, IN 47809
Telephone Number:	812-237-2987
Email Address:	jmcmnabb@indstate.edu

Jeff McNabb will coordinate with Safety

B. Tentative Team Assignments: (Traditional 2009 Standards for IT Dept. – Outcomes Assessment for Safety BS and Master)

Team Chair:	Dr. Verna M. Fitzsimmons
Employer:	Kent State University
Address 1:	Applied Business & Technology
Address 2:	P. O. Box 5190
City, State, & Zip:	Kent, OH 44242
Home Telephone:	
Business Telephone:	330-672-7064
Email Address:	vfitzsim@kent.edu

Mr. Todd Myers

Employer:	Ohio University
Address 1:	Rm 124B, Stocker Center
City, State, & Zip:	Athens, OH 45701-2979
Home Telephone:	
Business Telephone:	(740) 593-1455
Email Address:	myers2@ohio.edu

Team Member 3:	Dr. Mandara Savage, CSIT
Employer:	Southern Illinois Univ-Carbondale
Address 1:	Technology
Address 2:	Mailcode 6603
City, State, & Zip:	Carbondale, IL 62901-6603
Home Telephone:	
Business Telephone:	618-536-3396
Email Address:	msavage@engr.siu.edu

Team Member 4:	Dr. Jess Godbey
Employer:	Jacksonville State Univ.
Address 1:	134 Ayers Hall
Address 2:	700 Pelham Road North
City, State, & Zip:	Jacksonville, AL 36265
Home Telephone:	
Business Telephone:	(256) 782-5080
Email Address:	jgodbey@jsu.edu

C. The following dates have been selected for the on-site visit:

March 28-30, 2010

D. A copy of your Self-Study Report must be sent to each team member by: February 26, 2010

If the above team member assignments and visitation dates are acceptable to your institution, please sign below, return the original to the Executive Director, and forward copies to your institution head and program head.

Institution Contact Person: Jeff McNabb

Date: 12-22-09
March 17, 2004

Bonnie L. Saucier, PhD, RN
Dean and Professor
School of Nursing
Indiana State University
749 Chestnut Street
Terre Haute, IN 47809

Dear Dr. Saucier:

This letter is formal notification of the action taken by the National League for Nursing Accrediting Commission at its meeting on February 25-26, 2004. The Commission approved the master's degree program for continuing accreditation and scheduled the next evaluation visit for Fall 2011. The Commission approved the baccalaureate degree program for continuing accreditation and scheduled the next evaluation visit for Fall 2011. The Commission approved the associate degree program for continuing accreditation and scheduled the next evaluation visit for Fall 2011.

Deliberations centered on the Self Study Report, the School Catalog, the Program Evaluator Report, and the recommendation for accreditation proposed by the program evaluators and the evaluation review panel.

The Commission affirmed the strengths and areas needing development as outlined in the attached Summary of Deliberations of the Evaluation Review Panel.

On behalf of the Commission, we thank you and your colleagues for your commitment to quality nursing education. By choosing to stand for accreditation by NLNAC, your nursing program demonstrates a continued interest in having the program measured against the highest national standards of quality in nursing education. If you have questions about this action or about Commission policies and procedures, please write or call me or a member of the NLNAC Staff.

Barbara R. Grumet
Executive Director

cc: Mary E. Graham, EdD, RN Program Evaluator
Geraldine Allen, DSN, FNP, RN Program Evaluator
Kathleen M. Burke, PhD, RN Program Evaluator
Sally J. Bowser, MSN, RN Program Evaluator
Judith Lindquist, MEd, MSN, RN Program Evaluator

Enc. Summary of Deliberations of the Evaluation Review Panel
INDIANA STATE UNIVERSITY
TERRE HAUTE, INDIANA

SUMMARY OF DELIBERATIONS OF THE
MASTER'S, BACCALAUREATE, AND ASSOCIATE DEGREE EVALUATION REVIEW PANEL
FALL 2003 ACCREDITATION CYCLE

Program Accreditation History

<table>
<thead>
<tr>
<th>Program</th>
<th>Established</th>
<th>Initial Accreditation</th>
<th>Last Evaluation Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's</td>
<td>???</td>
<td>November 1989</td>
<td>November 1995</td>
</tr>
<tr>
<td>Baccalaureate</td>
<td>???</td>
<td>December 1969</td>
<td>November 1995</td>
</tr>
<tr>
<td>Associate</td>
<td></td>
<td>January 1980</td>
<td>November 1995</td>
</tr>
</tbody>
</table>

Overview

<table>
<thead>
<tr>
<th></th>
<th>Master's</th>
<th>Baccalaureate</th>
<th>Associate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Program</td>
<td>42 credits</td>
<td>125-131</td>
<td>64-67</td>
</tr>
<tr>
<td>Number of Students</td>
<td>39</td>
<td>202</td>
<td>67</td>
</tr>
<tr>
<td>Number of Faculty</td>
<td>6</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

Evaluation Review Panel Recommendation

Master's Degree Program: Continuing Accreditation. Next review in eight (8) years.

Baccalaureate Degree Program: Continuing Accreditation. Next review in eight (8) years

Associate Degree Program: Continuing Accreditation. Next review in eight (8) years

Commentary:

Strengths by Accreditation Standard

Standard I. Mission and Governance:
- Leadership of the nurse administrator
Standard IV. Curriculum and Instruction
- Sycamore Nursing Center: a service and learning environment for students in all programs

Standard V. Resources:
- Learning resources: library, classroom building, and computer resources available to faculty and students
- Nursing skills laboratories

Standard VII. Educational Effectiveness:
- Evaluation plan, very well done

Areas Needing Development by Standard

Standard I. Mission and Governance:
- Creation of an environment that fosters research/scholarship by the faculty of the School of Nursing

Standard VI. Integrity:
- Clarification of information regarding the status of the Associate Degree Nursing Program

Standard VII. Educational Effectiveness:
- Refinement of the evaluation plan to include expected levels of achievement for all areas, and criteria 2 and 3